Abstract:
A method of fabricating row lines over a field emission array. The method employs only two mask steps to define row lines and pixel openings through selected regions of each of the row lines. In accordance with the method of the present invention, a layer of conductive material is disposed over a substantially planarized surface of a grid of semiconductive material. A layer of passivation material is then disposed over the layer of conductive material. In one embodiment of the method, a first mask may be employed to remove passivation material and conductive material from between adjacent rows of pixels and from substantially above each of the pixels of the field emission array. A second mask is employed to remove semiconductive material from between the adjacent rows of pixels. In another embodiment of the method, a first mask is employed to facilitate removal of passivation material, conductive material, and semiconductive material from between adjacent rows of pixels of the field emission array. A second mask is employed to facilitate the removal of passivation material and conductive material from the desired areas of pixel openings. The present invention also includes field emission arrays having a semiconductive grid and a relatively thin passivation layer exposed between adjacent row lines.
Abstract:
A method of fabricating a field emission array that employs a single mask to define the emitter tips thereof and their corresponding resistors. A layer of conductive material is disposed over a substrate of the field emission array. A plurality of substantially mutually parallel conductive lines is defined from the layer of conductive material. At least one layer of semiconductive material or conductive material is disposed over the conductive lines and over the regions of the substrate exposed between adjacent conductive lines. A mask material is disposed over the layer of semiconductive material or conductive material, substantially above each of the conductive lines. Portions of the layer of semiconductive material or conductive material exposed through the mask material may be removed to expose substantially longitudinal center portions of the conductive lines. Other portions of the layer of semiconductive material or conductive material may remain over peripheral lateral edges of the conductive lines. The mask material may be removed and the layer of semiconductive material or conductive material planarized. A mask is disposed over the field emission array and portions of the layer of semiconductive material or conductive material removed therethrough to define emitter tips and their corresponding resistors. The substantially longitudinal center portion of each of the conductive lines may be removed to electrically isolate adjacent columns of pixels of the field emission array from each other. Field emission arrays fabricated by the method of the present invention are also within the scope of the present invention.
Abstract:
Chemical vapor deposition methods of forming titanium silicide including layers on substrates are disclosed. TiCl4 and at least one silane are first fed to the chamber at or above a first volumetric ratio of TiCl4 to silane for a first period of time. The ratio is sufficiently high to avoid measurable deposition of titanium silicide on the substrate. Alternately, no measurable silane is fed to the chamber for a first period of time. Regardless, after the first period, TiCl4 and at least one silane are fed to the chamber at or below a second volumetric ratio of TiCl4 to silane for a second period of time. If at least one silane was fed during the first period of time, the second volumetric ratio is lower than the first volumetric ratio. Regardless, the second feeding is effective to plasma enhance chemical vapor deposit a titanium silicide including layer on the substrate.
Abstract:
Conductive contacts in a semiconductor structure, and methods for forming the conductive components are provided. The method comprises depositing a conductive material over a substrate to fill a contact opening, removing excess material from the substrate leaving the contact within the opening, and then heating treating the contact at a high temperature, preferably with a rapid thermal anneal process, in a reactive gas to remove an undesirable component from the contact, for example, thermal annealing a TiCl4-based titanium nitride in ammonia to remove chlorine from the contact, which can be corrosive to an overlying aluminum interconnect at a high concentration. The contacts are useful for providing electrical connection to active components in integrated circuits such as memory devices. In an embodiment of the invention, the contacts comprise boron-doped and/or undoped TiCl4-based titanium nitride having a low concentration of chlorine. Boron-doped contacts further possess an increased level of adhesion to the insulative layer to eliminate peeling from the sidewalls of the contact opening and cracking of the insulative layer when formed to a thickness of greater than about 200 angstroms in a high-aspect-ratio opening.
Abstract:
In one aspect, the invention encompasses a method of treating the end portions of an array of substantially upright silicon-comprising structures. A substrate having a plurality of substantially upright silicon-comprising structures extending thereover is provided. The substantially upright silicon-comprising structures have base portions, and have end portions above the base portions. A masking layer is formed over the substrate to cover the base portions of the substantially upright silicon-comprising structures while leaving the end portions exposed. The end portions are then exposed to conditions which alter the end portions relative to the base portions. In another aspect, the invention encompasses a method of treating the ends of an array of silicon-comprising emitter structures. A substrate having a plurality of silicon-comprising emitter structures thereover is provided. The emitter structures have base portions and ends above the base portions. A layer of spin-on-glass is formed over the substrate. The layer of spin-on-glass covers the base portions of the emitter structures and leaves the ends exposed. The ends are then exposed to conditions which alter the ends relative to the base portions. In yet another aspect, the invention encompasses a cathode assembly which includes a plurality of silicon-comprising emitter structures projecting over a substrate. The emitter structures have base portions and ends above the base portions, and the ends comprise a different material than the base portions.
Abstract:
Conductive contacts in a semiconductor structure, and methods for forming the conductive components are provided. The method comprises depositing a conductive material over a substrate to fill a contact opening, removing excess material from the substrate leaving the contact within the opening, and then heating treating the contact at a high temperature, preferably with a rapid thermal anneal process, in a reactive gas to remove an undesirable component from the contact, for example, thermal annealing a TiCl4-based titanium nitride in ammonia to remove chlorine from the contact, which can be corrosive to an overlying aluminum interconnect at a high concentration. The contacts are useful for providing electrical connection to active components in integrated circuits such as memory devices. In an embodiment of the invention, the contacts comprise boron-doped and/or undoped TiCl4-based titanium nitride having a low concentration of chlorine. Boron-doped contacts further possess an increased level of adhesion to the insulative layer to eliminate peeling from the sidewalls of the contact opening and cracking of the insulative layer when formed to a thickness of greater than about 200 angstroms in a high-aspect-ratio opening.
Abstract:
A method for fabricating row lines and pixel openings of a field emission array that employs only two masks. A first mask is disposed over electrically conductive material and semiconductive material and includes apertures that are alignable between rows of pixels of the field emission array. Row lines of the field emission array are defined through the first mask. A passivation layer is then disposed over at least selected portions of the field emission array. A second mask, including apertures alignable over the pixel regions of the field emission array, is disposed over the passivation layer. The second mask is used in defining openings through the passivation layer and over the pixel regions of the field emission array. Conductive material exposed through the apertures of the second mask may also be removed to expose the underlying semiconductive grid and to further define the pixel openings.
Abstract:
Methods of forming base plates for field emission display (FED) devices, methods of forming field emission display (FED) devices, and resultant FED base plate and device constructions are described. In one embodiment, a substrate is provided and is configurable into a base plate for a field emission display. A plurality of discrete, segmented regions of field emitter tips are formed by at least removing portions of the substrate. The regions are electrically isolated into separately-addressable regions. In another embodiment, a plurality of field emitters are formed from material of the substrate and arranged into more than one demarcated, independently-addressable region of emitters. Address circuitry is provided and is operably coupled with the field emitters and configured to independently address individual regions of the emitters. In yet another embodiment, a monolithic addressable matrix of rows and columns of field emitters is provided and has a perimetral edge defining length and width dimensions of the matrix. The matrix is partitioned into a plurality of discretely-addressable sub-matrices of field emitters. Row and column address lines are provided and are operably coupled with the matrix and collectively configured to address the field emitters. At least one of the row or column address lines has a length within the matrix which is sufficient to address less than all of the field emitters which lie in the direction along which the address line extends within the matrix.
Abstract:
Field emitter display (FED) assemblies and methods of forming field emitter display (FED) assemblies are described. In one embodiment, a substrate is provided having a column line formed and supported thereby. A plurality of field emitter tip regions are formed and disposed in operable proximity to the column line. At least some of the regions define different pixels of the display. A continuous resistor is interposed between the column line and at least two different pixels. In another embodiment, a column line is formed and supported by a substrate. A plurality of field emitter tip regions are formed and disposed in operable proximity to the column line. The regions define different pixels of the display. A single current-limiting resistor is operably coupled with the column line and at least two different pixels.
Abstract:
Conductive contacts in a semiconductor structure, and methods for forming the conductive components are provided. The contacts are useful for providing electrical connection to active components beneath an insulation layer in integrated circuits such as memory devices. The conductive contacts comprise boron-doped TiCl4-based titanium nitride, and possess a sufficient level adhesion to the insulative layer to eliminate peeling from the sidewalls of the contact opening and cracking of the insulative layer when formed to a thickness of greater than about 200 angstroms.