摘要:
A magnetic sensor is disclosed comprising an antiferromagnetic layer; a first ferromagnetic layer disposed over the antiferromagnetic layer, the first ferromagnetic layer having a magnetization that is pinned by the antiferromagnetic layer; a second ferromagnetic layer disposed over the first ferromagnetic layer, the second ferromagnetic layer having a magnetization that rotates due to an applied magnetic field; a third ferromagnetic layer disposed adjacent to an end of the second ferromagnetic layer, the third ferromagnetic layer having a primarily in-plane magnetization providing a magnetic field to stabilize the end of the second ferromagnetic layer; an amorphous, metallic, nonmagnetic underlayer disposed adjacent to the antiferromagnetic layer; and a crystalline seed layer disposed between the underlayer and the third ferromagnetic layer, the seed layer having a crystalline structure that promotes the in-plane magnetization of the third ferromagnetic layer.
摘要:
A magnetic write head includes a seed layer and a magnetic layer on the seed layer. The seed layer includes seed-layer grains having either a face-centered cubic (fcc) crystalline structure with a surface plane substantially oriented in a [111] direction or a hexagonal-close-packed (hcp) crystalline structure with a surface plane substantially oriented in a [0001] direction. The magnetic layer includes magnetic-layer grains having a body-centered-cubic (bcc) crystalline structure with a surface plane substantially oriented in a [110] direction.
摘要:
Present invention discloses novel designs of carbon nanotube spin valve structures for incorporation into magnetic storage and magnetic sensing devices, such as magnetic read head, MRAM, and magnetic field sensor. One of the designs is an in-stack carbon nanotube spin valve, which consists of a ferromagnetic free layer and a ferromagnetic pinned layer. The two layers are physically separated, although they reside in parallel planes. A single or plurality of vertically aligned carbon nanotubes are in between the two layers, and in electrical contact with both. The other design is a planar carbon nanotube spin valve, which consists of ferromagnetic free layer and pinned layer in substantially the same plane. They are electrically connected by in-plane aligned carbon nanotubes, which reside in between. The methods of fabricating the magnetic read head and MRAM devices utilizing these types of carbon nanotube spin valves are also described.
摘要:
A magnetic head for writing information on a relatively-moving medium includes a first substantially flat soft magnetic pole layer and a second substantially flat pole layer with at least one coil layer between them. The pole layers are magnetically coupled in a core region and spaced by more than one micron from one other. A soft magnetic pedestal adjoins the first pole layer adjacent to a medium-facing surface of the head, and a first high magnetic saturation layer adjoins the pedestal. A second high magnetic saturation layer adjoins the second pole layer. The first high magnetic saturation layer has a first throat height and the second high magnetic saturation layer extends from the medium-facing surface only to a second throat height. The first and second throat heights are within about one and one-half microns from the medium-facing surface and are essentially equal.
摘要:
A method and system for manufacturing a perpendicular magnetic recording head is disclosed. The method and system include providing a chemical mechanical planarization (CMP) uniformity structure having an aperture therein and forming a perpendicular magnetic recording pole within the aperture. The CMP uniformity structure may include a CMP barrier layer. The method and system further include fabricating an insulator after formation of the perpendicular magnetic recording pole and performing a CMP to remove a portion of the insulator, expose a portion of the perpendicular magnetic recording pole and planarize an exposed surface of the perpendicular magnetic recording head.
摘要:
A computer disk drive (22) having a write head (52) which includes a coil (38), a photoresist insulation layer (66) formed on the coil (38), and an insulation shell layer (102) which is formed on the photoresist insulation layer (66). In the first preferred embodiment (100), the top pole (42) of the write head (52) is formed on the insulation shell layer (102).In the second preferred embodiment (200), the disk drive write gap (76) is formed on the insulation shell layer (102) and the top pole (42) of the write head (52) is formed on the write gap (76).The insulation shell layers (102) in both embodiments are preferably made of dielectric materials (103).Methods of fabrication for these embodiments are also disclosed.
摘要:
A read/write head and method of making the same are used in a data storage system, such as a disk drive, for perpendicular magnetic recording of data. The head employs a two-layer pole design with a main pole made of sputtered high moment magnetic material, and an adjunct pole made of electroplated soft magnetic film. The main pole is used to write data onto the medium, and is formed over the write coil. The adjunct pole is substantially recessed from the air bearing surface and is formed over the main pole. The present head design significantly enhances the magnetic write field, and substantially reduces side-writing that result in accidental erasure of data in adjacent tracks on the magnetic recording medium.
摘要:
Electromagnetic transducers are disclosed having write poles with a leading edge that is smaller than a trailing edge, which can reduce erroneous writing for perpendicular recording systems. The write poles may have a trapezoidal shape when viewed from a direction of an associated medium. The write poles may be incorporated in heads or sliders that also contain read elements such as magnetoresistive sensors, and may be employed with information storage systems such as disk drives.
摘要:
In at least one embodiment, the apparatus of the invention is a read sensor which includes a shield, a sensor element, a read gap positioned between the shield and the sensor element, and an extra gap positioned between the shield and the sensor element and adjacent the read gap. The sensor element is positioned in a sensor layer. With the sensor element and the shield separated by only the relatively thin gap layer, high sensitivity of the sensor element is obtained. Further, by placing the relatively thick extra gap between the shield and the sensor layer and about the sensor element, the potential for shorting is minimized. The shield can be planarized to keep the read gap and the sensor layer at, and about, the sensor element substantially planar. This, in turn, results in improved control of sensor track widths and greatly reduces the potential for pooling of photoresist. In at least one embodiment, the method of the invention is for fabricating a read sensor and includes depositing a read gap onto a planarized shield, depositing an extra gap adjacent an exposed portion of the read gap, and depositing a sensor element onto the exposed portion of the first gap and adjacent to the extra gap.
摘要:
A preferred method of the present invention provides an improved thin film for carrying magnetic flux. With the preferred method, the magnetic thin film may be formed by depositing Fe by reactive sputtering using N2 to form a thin film comprising &agr;-Fe and &ggr;-Fe4N. With this method, the relative percentage of &ggr;-Fe4N in the deposited film is increased to provide expanding lattice constants for both the &agr;-Fe and the &ggr;-Fe4N. Increasing &ggr;-Fe4N increases resistivity while expanding lattice constants to provide improved coercivity at higher resistivity. Increasing the percentage of &ggr;-Fe4N to provide expanding lattice constants for both the &agr;-Fe and the &ggr;-Fe4N may be accomplished by adjusting sputtering power, N2 gas percentage, a flow rate of N2, and substrate bias. In some embodiments, high sputtering power of about 3-4 kW with about 15-30 percent of N2 may be used to sputter FeX, where X is selected from the group consisting of Rh, Ta, Hf, Al, Zr, Ti, Ru, Si, Cr, V, Si, Sr, Nb, Mo, Ru, and Pd, to provide expanding &agr;-Fe and &ggr;-Fe2N lattice constants. In some embodiments, FeXN films having resistivity values greater than about 50 &mgr;&OHgr;cm, 80 &mgr;&OHgr;cm, 100 &mgr;&OHgr;cm, 115 &mgr;&OHgr;cm, or more, for coercivity values less than about 10 Oe, 5 Oe, or 3 Oe are possible, for values of Bs greater than around 12 kG to 17 kG. Embodiments may be used for pole or shield structures in magnetic heads for data storage and retrieval apparatuses to improve high frequency performance.