Abstract:
Spin current generators and systems and methods for employing spin current generators. A spin current generator may be configured to generate a spin current polarized in one direction, or a spin current selectively polarized in two directions. The spin current generator may by employed in spintronics applications, wherein a spin current is desired.
Abstract:
A magnetic head for perpendicular recording without writing from the lateral sides of a mains pole and without erasing data on adjacent tracks. A magnetic disk storage apparatus using the magnetic head. The lateral side of the main pole of a magnetic head for perpendicular recording may have an inverted tapered shape obtained by forming a groove as a track portion to an inorganic insulating layer and then forming a magnetic layer and then flattening the upper surface. A leading edge, a trailing edge, or both lateral edges of the magnetic head may be tapered. The taper may be either smooth and linear or curved in profile.
Abstract:
A nonlinear transition shift (NLTS) measurement procedure for read/write heads employing a giant magnetoresistive (GMR) merged heads. The method of this invention includes the pulse-shape distortion effects on recording nonlinearity, which can significantly affect the existing theoretical formulae for calculating nonlinearity correction factor from measured partial erasure values, and second-order approximation of equation of NLTS and nonlinearity correction factor. Transition broadening effects (TBE) and partial erasure (PE) are incorporated in the NLTS measurement procedure to permit accurate isolation of the NLTS from the unrelated TBE/PE and GMR nonlinear transfer characteristic (NTC). First, a fifth harmonic elimination (5HE) test is performed at bit period T to measure a first nonlinearity value X. Then two partial erasure (PE) tests are done at two different densities, one below the PE threshold to measure a second nonlinearity value XS and the other at the same density as the 5HE test to measure a third nonlinearity value Xh. Finally, the NLTS is computed by combining the first, second and third nonlinearity values.
Abstract:
A magnetic tunneling structure formed of first and second ferromagnetic layers and a insulating tunneling barrier layer sandwiched therebetween. The first and second ferromagnetic layers are preferably formed of the same ferromagnetic material, but have different crystallographic structures. The insulating tunneling barrier layer is preferably a nitride layer, for example, boron nitride, formed on the first ferromagnetic layer.
Abstract:
Disclosed are a spin valve magnetoresistive sensor and methods of fabricating the same. The sensor includes a free layer, a synthetic antiferromagnetic (SAF) layer, a spacer layer positioned between the free layer and the SAF layer, and a Mn-based antiferromagnetic pinning layer in contact wish the SAF layer. The SAF layer includes first and second ferromagnetic CoFe layers and an Ru spacer layer positioned between and directly in contact with the first and second CoFe ferromagnetic layers.
Abstract:
The invention provides a GMR head in which an adequate bias point may be set for the free magnetic layer 12 of the GMR head by suppressing the static magnetic field in the free magnetic layer which arises from a pinned magnetic layer 14 of the GMR head. The GMR head comprises a sensor section 10, a magnetic field correction section 20 disposed laterally adjacent to the sensor section 10. The sensor section 10 includes, in addition to the free magnetic layer 12 and the pinned magnetic layer 14, an intermediate layer 13 and an anti-ferromagnetic layer 15 in a specific arrangement. The magnetic field correction section 20 may have the same structure as the sensor section 10. Because the sensor section 10 and the magnetic field correction section 20 are provided independently and disposed laterally adjacent to each other in the direction of height of the GMR head, the magnetic field emerging from the pinned magnetic layer 14 into the free magnetic layer 12 is suppressed by the magnetic field correction section 20. The magnetic field correction section 20 may be easily formed together and simultaneously with the sensor section 10.
Abstract:
Spin current generators and systems and methods for employing spin current generators. A spin current generator may be configured to generate a spin current polarized in one direction, or a spin current selectively polarized in two directions. The spin current generator may by employed in spintronics applications, wherein a spin current is desired.
Abstract:
Spin current generators and systems and methods for employing spin current generators. A spin current generator may be configured to generate a spin current polarized in one direction, or a spin current selectively polarized in two directions. The spin current generator may by employed in spintronics applications, wherein a spin current is desired.
Abstract:
Spin current generators and systems and methods for employing spin current generators. A spin current generator may be configured to generate a spin current polarized in one direction, or a spin current selectively polarized in two directions. The spin current generator may by employed in spintronics applications, wherein a spin current is desired.
Abstract:
An MTJ (magnetic tunneling junction) MRAM (magnetic random access memory) cell is formed on a conducting lead and magnetic keeper layer that is capped by a sputter-etched Ta layer. The Ta capping layer has a smooth surface as a result of the sputter-etching and that smooth surface promotes the subsequent formation of a lower electrode (pinning/pinned layer) with smooth, flat layers and a radical oxidized (ROX) Al tunneling barrier layer which is ultra-thin, smooth, and to has a high breakdown voltage. A seed layer of NiCr is formed on the sputter-etched capping layer of Ta. The resulting device has generally improved performance characteristics in terms of its switching characteristics, GMR ratio and junction resistance.