Abstract:
Novel tools and techniques are described for providing media content to a plurality of set-top boxes (“STBs”) over a licensed spectrum and over an unlicensed spectrum. In an aspect, each of the plurality of STBs might comprise a first transceiver configured to receive media content or data over a licensed spectrum and a second transceiver configured to receive and send media content or data over an unlicensed spectrum. The first STB of the plurality of STBs might receive a first portion of the media content at the first transceiver and receive a second portion of the media content at the second transceiver from a second STB of the plurality of STBs. The plurality of STBs might query each other to determine available frequencies and/or bandwidth, and might store results of the query in a table in local memory or in a database accessible by all of the plurality of STBs.
Abstract:
Novel tools and techniques are provided for implementing video qualification, which might include implementing video quality measurements at a subscriber premises and qualification of the subscriber premises for particular levels of video data transmission. In some cases, one or more customer premises equipment might comprise video quality chips that might perform measurements of the telecommunications links, and might send the results to a server associated with the service provider. The server might determine available video services, based on the results of the measurements, and might send the subscriber notifications indicating that the subscribers qualify for particular video services. In some cases, implementing video qualification might include the server determining that video service levels provided to a customer premises has been decreased or otherwise negatively affected. The server might order diagnosis and repairs of the affected equipment, and might send a notification to the subscriber indicating that repairs are underway.
Abstract:
Novel tools and techniques are provided for invoking virtualized network functions. In some embodiments, a programmable service backbone might comprise at least one virtualized network function, and might provide virtualized network functions required to provision a service offering. In some cases, at least one application programming interface might be configured to invoke the at least one virtualized network function of the programmable service backbone. An application programming interface gateway might be configured to manage access to the at least one application programming interface, and the application programming interface gateway might comprise a security layer. Virtualized service equipment, which might be in communication with the application programming interface gateway, might provide authentication indicative of selected virtualized network functions associated with the service offering, and the security layer might release an authorized subset of virtualized network functions of the at least one virtualized network function based on the authentication.
Abstract:
Novel tools and techniques are provided for implementing video qualification, which might include implementing video quality measurements at a subscriber premises and qualification of the subscriber premises for particular levels of video data transmission. In some cases, one or more customer premises equipment might comprise video quality chips that might perform measurements of the telecommunications links, and might send the results to a server associated with the service provider. The server might determine available video services, based on the results of the measurements, and might send the subscriber notifications indicating that the subscribers qualify for particular video services. In some cases, implementing video qualification might include the server determining that video service levels provided to a customer premises has been decreased or otherwise negatively affected. The server might order diagnosis and repairs of the affected equipment, and might send a notification to the subscriber indicating that repairs are underway.
Abstract:
Novel tools and techniques are described for providing media content to a plurality of set-top boxes (“STBs”) over a licensed spectrum and over an unlicensed spectrum. In an aspect, each of the plurality of STBs might comprise a first transceiver configured to receive media content or data over a licensed spectrum and a second transceiver configured to receive and send media content or data over an unlicensed spectrum. The first STB of the plurality of STBs might receive a first portion of the media content at the first transceiver and receive a second portion of the media content at the second transceiver from a second STB of the plurality of STBs. The plurality of STBs might query each other to determine available frequencies and/or bandwidth, and might store results of the query in a table in local memory or in a database accessible by all of the plurality of STBs.
Abstract:
A system and method for distributing an alert to a set-top box. Media content is received for communication to one or more set-top boxes. Data is extracted from the media content. A determination is made whether the extracted data is associated with one or more alert profiles. The alert is generated in response to the extracted data being associated with the one or more alert profiles. The alert is distributed to one or more set-top boxes in response to generating the one or more alert profiles.
Abstract:
Embodiments of the invention comprise systems and methods related to the provision of location based services via a mobile communications device. In different embodiments, a communication system is described, comprising a mobile communications device, a mobile communications base station, and a server computer system. The location of the device may be correlated with certain user preferences stored on the server computer system. In various embodiments, components of the larger system are described. In some cases, various location related mapping functions for a device are discussed. In other embodiments, systems and methods which provide for activities to be undertaken based on the location of a device are described. In still other embodiments, the disclosure addresses systems and methods of efficiently determining the location of a mobile device. In some embodiments, different notification schemes based on the location of a device and specified preferences are described. In various other embodiments, the disclosure addresses systems and methods for keyword monitoring based on the location of a device.
Abstract:
Novel tools and techniques are provided for utilizing blockchain to implement named data networking. In various embodiments, a computing system might determine whether a cache that is communicatively coupled to the computing system contains data that is responsive to a first request received from a user. If so, the computing system might retrieve and send (to the client device) data that is responsive to the received first request. If not, the computing system might send, to a blockchain system, a second request for identifying a blockchain containing a block containing data responsive to the received first request. In response to identifying such a blockchain, the computing system might receive a copy of the identified blockchain; might abstract, from the identified blockchain, the block containing the data responsive to the received first request; might abstract the data from the identified block; and might send the data to the client device.
Abstract:
Novel tools and techniques for providing an in-line AI virtual assistant are provided. A system includes a session border controller coupled to an end-user device, and a session initiation protocol stack. The session initiation protocol stack includes a processor, and non-transitory computer readable media comprising instructions executable by the processor to: receive, from the session border controller, a call invite request; provision, via the AI virtual assistant service, an AI virtual assistant instance in response to the call invite request; and join the AI virtual assistant instance to a call with the end-user device.
Abstract:
Novel tools and techniques are provided for implementing error detection in a network, and, more particularly, to methods, systems, and apparatuses for implementing error and/or fault detection in a network and/or media stream and providing options to address the error and/or fault in the network and/or media stream. In various embodiments, a computer might detect an error in a first network and send a notification indicating that the error has occurred. The notification might contain one or more options to address the error in the first network. The computer, a user device, a service provider device, or a content provider device might receive and display the notification containing the one or more options. The computer, the user device, the service provider device, or the content provider device might then select at least one of the one or more options to address the error in the first network.