Abstract:
A high pressure polymerization process to form an ethylene-based polymer comprises the steps of: A. Injecting a first feed comprising a chain transfer agent system (CTA system) and ethylene into a first autoclave reactor zone operating at polymerization conditions to produce a first zone reaction product, the CTA system of the first reactor zone having a transfer activity Z1; and B. (1) Transferring at least part of the first zone reaction product to a second reactor zone selected from a second autoclave reactor zone or a tubular reactor zone and operating at polymerization conditions, and, optionally, (2) freshly injecting, a second feed into the second reactor zone to produce a second zone reaction product, with the proviso that at least one of the first reactor zone product and the freshly injected feed comprises a CTA system with a transfer activity of Z2; and with the proviso that the ratio of Z1:Z2 is greater than 1.
Abstract:
The invention provides a process to form an ethylene-based polymer, said process comprising polymerizing ethylene and at least one asymmetrical polyene, comprising an “alpha, beta unsaturated—carbonyl end” and a “C—C double bond end,” and wherein the polymerization takes place in the presence of at least one free-radical initiator, and wherein the polymerization takes place in a reactor configuration comprising at least two reaction zones, reaction zone 1 and reaction zone i (i≧2), wherein reaction zone i is downstream from reaction zone 1; and wherein at least one chain transfer agent (CTA) is added to the polymerization, and wherein the CTA is a saturated hydrocarbon or an unsaturated hydrocarbon.
Abstract:
The invention provides a composition comprising a first ethylene-based polymer, formed by a high pressure, free-radical polymerization process, and comprising the following properties: a) a Mw(abs) versus I2 relationship: Mw(abs)
Abstract:
A high pressure polymerization process to form an ethylene-based polymer comprises the steps of: A. Injecting a first feed comprising a chain transfer agent system (CTA system) and ethylene into a first autoclave reactor zone operating at polymerization conditions to produce a first zone reaction product, the CTA system of the first reactor zone having a transfer activity Z1; and B. (1) Transferring at least part of the first zone reaction product to a second reactor zone selected from a second autoclave reactor zone or a tubular reactor zone and operating at polymerization conditions, and, optionally, (2) freshly injecting, a second feed into the second reactor zone to produce a second zone reaction product, with the proviso that at least one of the first reactor zone product and the freshly injected feed comprises a CTA system with a transfer activity of Z2; and with the proviso that the ratio of Z1:Z2 is greater than 1.
Abstract:
Ethylene-based interpolymers, e.g., ethylene-acrylic acid copolymers, are made by a process comprising the steps of: A. Injecting a first feed comprising a chain transfer agent system (CTA system) and ethylene into a first autoclave reactor zone to produce a first zone reaction product, the CTA system of the first reactor zone having a transfer activity Z1; and B. (1) Transferring at least part of the first zone reaction product to a second reactor zone selected from a second autoclave reactor zone or a tubular reactor zone, and (2) at least one of transferring or freshly injecting a feed comprising a CTA system into the second reactor zone to produce a second zone reaction product, the CTA system of the second reactor zone having a transfer activity of Z2; and with the proviso that the ratio of Z1:Z2 is greater than 1. The comonomer comprises at least one carboxylic acid group or an anhydride group.
Abstract:
A high pressure polymerization to form an ethylene-based polymer, the process comprising the following: polymerizing a reaction mixture comprising ethylene, using a reactor system comprising at least three ethylene-based feed streams and a reactor configuration that comprises at least four reaction zones.
Abstract:
A high pressure, free radical polymerization process to form an ethylene-based polymer, the process comprising at least the following step: polymerizing a reaction mixture comprising ethylene, using a polymerization system comprising the following: (A) a reactor configuration comprising at least one reactor that comprises at least two reaction zones, a first reaction zone (reaction zone 1) and an ith reaction zone (where i≥2); wherein the ith reaction zone is the last reaction zone, and wherein i is the total number of reaction zones; (B) at least two ethylene-based feed streams, a first ethylene-based feed stream and an nth ethylene-based feed stream, wherein the first ethylene-based feed stream is sent to the first reaction zone, and the nth ethylene-based feed stream is the last ethylene based feed stream sent to the reactor configuration; wherein n≤i; and RZn/RZ1 does not equal 1.0, where RZ1=mole fraction of make-up ethylene in the first ethylene-based feed stream to the first reaction zone; where RZn=mole fraction of make-up ethylene in the last ethylene-based feed stream sent to the reactor configuration; (C) a control system to control the percentage of the make-up ethylene in the first ethylene-based feed stream, and the percentage of the make-up ethylene in the nth ethylene-based feed stream; and wherein at least one reaction zone receives a CTA make-up feed stream comprising an alpha-olefin, and wherein the alpha-olefin has a chain transfer activity constant (Cs) value ≤0.10, and wherein the chain transfer activity constant (Cs) is measured at 1360 atm, 130° C.
Abstract:
A process for producing a composition comprising A) an ethylene-based polymer that has a density greater than, or equal to, 0.940 g/cc, and B) an ethylene homopolymer formed by polymerizing a reaction mixture comprising ethylene, using a free-radical, high pressure polymerization process includes adding component (A) to a molten stream of component (B) after component (B) exits the separator and before component (B) is solidified in the pelletizer. A polymerization configuration for producing the composition includes at least one reactor, at least one separator, at least one pelletizer, and a device used to feed component (A), in the molten state, to a molten stream of component (B) before the pelletizer. The composition has a ratio of the melt strength of the composition to the melt strength of component (B) is greater than or equal to 1.04 and a density of greater than 0.920 g/cc.
Abstract:
A process to form an ethylene-based polymer comprises polymerizing a reaction mixture comprising ethylene, at least one monomeric chain transfer agent, and at least one chain transfer agent system comprising at least one chain transfer agent (CTA) in the presence of at least one free-radical initiator and in a reactor configuration comprising at least two reaction zones, reaction zone 1 and reaction zone i (i≥2), wherein the reaction zone i is downstream from reaction zone 1. The ratio of “the activity of the CTA system of the feed to the first reaction zone” to the “activity of the CTA system of the cumulative feed to the reaction zone i,” (Z1/Zi), is less than or equal to (0.8−0.2*log(Cs)), wherein Cs is from 0.0001 to 10.
Abstract:
A high pressure polymerization, as described herein, to form an ethylene-based polymer, comprising the following steps: polymerizing a reaction mixture comprising ethylene, using a reactor system comprising at least three ethylene-based feed streams and a reactor configuration that comprises at least four reaction zones, and at least one of the following a) through c), is met: (a) up to 100 wt % of the ethylene stream to the first zone comes from a high pressure recycle, and/or up to 100 wt % of the last ethylene stream to a zone comes from the output from a Primary compressor system; and/or (b) up to 100 wt % of the ethylene stream to first zone comes from the output from a Primary compressor system, and/or up to 100 wt % of the last ethylene stream to a zone comes from a high pressure recycle; and/or (c) the ethylene stream to the first zone, and/or the last ethylene stream to a zone, each comprises a controlled composition; and wherein each ethylene stream to a zone receives an output from two or more cylinders of the last compressor stage of a Hyper compressor system.