摘要:
A method for modeling optical scattering includes an initial step of defining a zero-th order structure (an idealized representation) for a subject including a perturbation domain and a background material. A Green's function and a zero-th order wave function are obtained for the zero-th order structure using rigorous coupled wave analysis (RCWA). A Lippmann-Schwinger equation is constructed including the Green's function, zero-th order wave function and a perturbation function. The Lippmann-Schwinger equation is then evaluated over a selected set of mesh points within the perturbation domain. The resulting linear equations are solved to compute one or more reflection coefficients for the subject.
摘要:
A method and apparatus are disclosed for evaluating relatively small periodic structures formed on semiconductor samples. In this approach, a light source generates a probe beam which is directed to the sample. In one preferred embodiment, an incoherent light source is used. A lens is used to focus the probe beam on the sample in a manner so that rays within the probe beam create a spread of angles of incidence. The size of the probe beam spot on the sample is larger than the spacing between the features of the periodic structure so some of the light is scattered from the structure. A detector is provided for monitoring the reflected and scattered light. The detector includes multiple detector elements arranged so that multiple output signals are generated simultaneously and correspond to multiple angles of incidence. The output signals are supplied to a processor which analyzes the signals according to a scattering model which permits evaluation of the geometry of the periodic structure. In one embodiment, the sample is scanned with respect to the probe beam and output signals are generated as a function of position of the probe beam spot.
摘要:
A method and apparatus are disclosed for evaluating relatively small periodic structures formed on semiconductor samples. In this approach, a light source generates a probe beam which is directed to the sample. In one preferred embodiment, an incoherent light source is used. A lens is used to focus the probe beam on the sample in a manner so that rays within the probe beam create a spread of angles of incidence. The size of the probe beam spot on the sample is larger than the spacing between the features of the periodic structure so some of the light is scattered from the structure. A detector is provided for monitoring the reflected and scattered light. The detector includes multiple detector elements arranged so that multiple output signals are generated simultaneously and correspond to multiple angles of incidence. The output signals are supplied to a processor which analyzes the signals according to a scattering model which permits evaluation of the geometry of the periodic structure. In one embodiment, the sample is scanned with respect to the probe beam and output signals are generated as a function of position of the probe beam spot.
摘要:
A combination metrology tool is disclosed which is capable of obtaining both thermal wave and optical spectroscopy measurements on a semiconductor wafer. In a preferred embodiment, the principal combination includes a thermal wave measurement and a spectroscopic ellipsometric measurement. These measurements are used to characterize ion implantation processes in semiconductors over a large dosage range.
摘要:
An optical measurement system, including a reference ellipsometer and a non-contact optical measurement device, evaluates a sample having at least a partially known composition. The reference ellipsometer includes a light generator to generate a beam of quasi-monochromatic light of known wavelength and polarization, directed at a non-normal angle of incidence to interact with the sample. An analyzer creates interference between S and P polarized components of the reflected beam, the intensity of which is measured by a detector. A processor determines the polarization state using the detected intensity, and determines an optical property of the sample based upon the determined polarization state, the known wavelength, and the composition. The processor calibrates the optical measurement device, used to measure an optical parameter of the sample, by comparing the measured optical parameter from the optical measurement device to the determined optical property from the reference ellipsometer.
摘要:
A method for modeling optical scattering includes an initial step of defining a zero-th order structure (an idealized representation) for a subject including a perturbation domain and a background material. A Green's function and a zero-th order wave function are obtained for the zero-th order structure using rigorous coupled wave analysis (RCWA). A Lippmann-Schwinger equation is constructed including the Green's function, zero-th order wave function and a perturbation function. The Lippmann-Schwinger equation is then evaluated over a selected set of mesh points within the perturbation domain. The resulting linear equations are solved to compute one or more reflection coefficients for the subject.
摘要:
A method and apparatus are disclosed for accurately and repeatably determining the thickness of a thin film on a substrate. A rotating compensator ellipsometer is used which generates both 2ω and 4ω output signals. The 4ω omega signal is used to provide an indication of the temperature of the sample. This information is used to correct the analysis of the thin film based on the 2ω signal. These two different signals generated by a single device provide independent measurements of temperature and thickness and can be used to accurately analyze a sample whose temperature is unknown.
摘要:
An apparatus for characterizing multilayer samples is disclosed. An intensity modulated pump beam is focused onto the sample surface to periodically excite the sample. A probe beam is focused onto the sample surface within the periodically excited area. The power of the reflected probe beam is measured by a photodetector. The output of the photodetector is filtered and processed to derive the modulated optical reflectivity of the sample. Measurements are taken at a plurality of pump beam modulation frequencies. In addition, measurements are taken as the lateral separation between the pump and probe beam spots on the sample surface is varied. The measurements at multiple modulation frequencies and at different lateral beam spot spacings are used to help characterize complex multilayer samples. In the preferred embodiment, a spectrometer is also included to provide additional data for characterizing the sample.
摘要:
Systems and methods are disclosed for evaluating nitrogen levels in thin gate dielectric layers formed on semiconductor samples. In one embodiment, a tool is disclosed which includes both a narrow band ellipsometer and a broadband spectrometer for measuring the sample. The narrowband ellipsometer provides very accurate information about the thickness of the thin film layer while the broadband spectrometer contains information about the nitrogen levels. In another aspect of the subject invention, a thermal and/or plasma wave detection system is used to provide information about the nitrogen levels and nitration processes.
摘要:
The ability of a Modulated Optical Reflectivity (MOR) or Thermal Wave (TW) system to measure characteristics of a sample based on the amplitude and phase of a probe beam reflected from the surface of the sample can be improved by providing a polychromatic pump and/or probe beam that can be scanned over a wide spectral range, such as a range of at least 100 nm. The information contained in the spectral dependencies of a TW response obtained from the sample can be compared and/or fitted to corresponding theoretical dependencies in order to obtain more precise and reliable information about the properties of the particular sample than is available for single-wavelength systems. This information can further be combined with measurements taken for varying spot separations or varying pump source modulation frequency, as well as with photo-thermal radiometry (PTR), spectroscopic reflectometry, and/or ellipsometry measurements.