摘要:
The initialization of the CoMP Resource Management Set for a given mobile terminal is based, at least in part, on an estimation of the mobile terminal's geographical location, which can be estimated using network positioning of the mobile terminal. One example method begins with the acquisition (410) by a network node of a geographical position estimate for the mobile terminal of interest. The network node then selects (420) a set of one or more CSI-RS resources for measurement by the mobile terminal, based on the estimated geographical position of the mobile terminal. Finally, the network node configures the mobile terminal to measure the selected CSI-RS resources by sending (430) control information identifying the set to the mobile terminal.
摘要:
The object of the present invention is to achieve a solution for handling the increased PAPR that is introduced by the FD and/or TD multi-antenna processing. This is achieved by isolating the PAPR increase to one, or a few antennas, that are matched with more powerful PAs, whereas the remaining antennas may use simpler/smaller PAs amplifying signals with smaller PAPRs.
摘要:
A method in a wireless device for reporting Channel State Information (CSI). The wireless device is comprised in a wireless communications system. The method includes receiving a CSI process configuration and a request for CSI information from a network node. The method further includes reporting CSI for one or more CSI processes. The CSI reflects the state of the channel for a CSI reference resource. According to the method, the CSI reference resource is determined based on the number of configured CSI processes. Related devices are also disclosed.
摘要:
Particular embodiments provide a method in a network node (110) for requesting a channel state information-only, CSI-only, report from a wireless terminal (120). The method comprises selecting (210), based on at least one parameter related to transmission of the CSI-only report, a transport block out of two or more available transport blocks, such that the at least one parameter is derivable from an indication of which transport block was selected. The network node then transmits (220) an uplink grant to the wireless terminal (110). The uplink grant comprises the request for the CSI-only report, and also comprises an indication of the selected transport block.
摘要:
The object of the present invention is to achieve a solution for handling the increased PAPR that is introduced by the FD and/or TD multi-antenna processing. This is achieved by isolating the PAPR increase to one, or a few antennas, that are matched with more powerful PAs, whereas the remaining antennas may use simpler/smaller PAs amplifying signals with smaller PAPRs.
摘要:
Frequency-selective phase shifts are applied to signals transmitted from multiple transmission points involved in a coordinated (joint) transmission to a given UE. An eNodeB or other network node controlling the joint transmission artificially induces frequency selectivity between signals received by the UE in joint transmission from different transmission points, so as to ensure an even balance between constructive and destructive combination over frequency. By applying frequency-selective phase shifts (e.g., pseudo-random phase shifts) to the different transmission points that perform joint transmission, the signals from the different transmission points are forced to combine at the UE in a non-coherent manner. As a result, uncertainty in how the signals combine is drastically reduced, since it can be expected that the signals will always combine incoherently. The reduced uncertainty translates to reduced back-off offset in the link adaptation, and thus in an increased throughput.
摘要:
Some of the example embodiments presented herein are directed towards an eNodeB (401), and corresponding method therein, for providing data transmission in a multiple antenna system. The eNodeB (401) may be configured to receive a plurality of signal quality assessments and a CSI report from a user equipment. Based on the received data the eNodeB (401) may determine a received power difference between the received data. The eNodeB (401) may further determine a beamforming direction for subsequent data transmissions. Based on the power difference, the eNodeB (401) may account for the received power difference in the subsequent data transmissions, thus improving data communications towards the user equipment.
摘要:
Some of the example embodiments presented herein are directed towards an eNodeB (401), and corresponding method therein, for establishing beamforming for downlink communications in a multiple antenna system. The eNodeB (401) may be configured to transmit a plurality of reference signals, where each reference signal is beamformed into a distinct direction with in at least one correlated domain (e.g., an elevation and/or azimuth domain). The eNodeB (401) may thereafter generate beamformed downlink communications for antenna elements and/or subelements based on received signal quality assessments of the plurality of reference signals.Some example embodiments may be directed towards a user equipment (505), and corresponding methods therein, for establishing beamforming for downlink communications. The user equipment (505) may be configured to receive the plurality of reference signals and provide signal assessments of the reference signals based on measurements performed by the user equipment (505). The user equipment (505) may thereafter transmit the signal quality assessments to the eNodeB (401) and receive beamformed downlink communications based on the signal quality assessments.
摘要:
Example embodiments presented herein are directed towards an eNodeB (401), and method therein, for establishing beamforming for downlink communications in a multiple antenna system. The eNodeB may be configured to receive, from a user equipment, a plurality of signal quality assessments which correspond to a distinct direction within at least one correlated domain (e.g., an elevation and/or azimuth domain). Based on the signal quality assessments, at least one first and second signal quality assessment may be identified according to a predetermined signal characteristic. Thereafter, a transmission direction may be determined based on the at least one first and second signal quality assessment and associated directions within the at least one correlated domain. Based on the determined transmission direction, downlink communications may be transmitted to the user equipment.
摘要:
A system and method to instruct a User Equipment (UE) how Uplink Control Information (UCI) on a Physical Uplink Shared Channel (PUSCH) should be transmitted with carrier aggregation. A semi-static signaling of a UCI mapping bit (via a Radio Resource Control (RRC) parameter) is used by a base station such as an eNodeB to require the UE to transmit UCI using one of two pre-determined UCI transmission modes. The bit can be decided by the base station, considering, for example, the available bandwidth or quality of different Uplink Component Carriers (UL CCs) associated with the UE. This network-based solution allows the network to either configure a general rule of UCI transmission by the UE or to enforce the UCI transmission on the Uplink Primary cell (UL Pcell). Because of the rules governing abstracts, this abstract should not be used to construe the claims.