Abstract:
Methods and sensors for selective fluid sensing are provided. Each sensor includes a resonant inductor-capacitor-resistor (LCR) sensor that is coated with a sensing material. In order to collect data, an impedance spectrum is acquired over a relatively narrow frequency range, such as the resonant frequency range of the LCR circuit. A multivariate signature may be calculated from the acquired spectrum to discern the presence of certain fluids and/or fluid mixtures. The presence of fluids is detected by measuring the changes in dielectric, dimensional, resistance, charge transfer, and other changes in the properties of the materials employed by observing the changes in the resonant electronic properties of the circuit. By using a mathematical procedure, such as principal components analysis (PCA) and others, multiple fluids and mixtures can be detected in the presence of one another, even in a high humidity environment or an environment wherein one or more fluids has a substantially higher concentration (e.g. 10×, 1,000,000×) compared to other components in the mixture.
Abstract:
In one embodiment a method for sensor reader calibration comprising: performing a calibration of a sensor reader wherein the calibration comprises open circuit calibration, a short circuit calibration, and a load circuit calibration, or any combination thereof in any succession; enabling connection of a pickup coil to the sensor reader to measure a sensor response; and applying a baseline correction to the sensor response, wherein the baseline correction is obtained utilizing measurements from the calibration step. In a further embodiment, a method for sensor response calibration incorporating environmental correction comprising: measuring a first resonance impedance spectrum of the sensor with a first applied power to the pickup coil; measuring a second resonance impedance spectrum of the sensor with a second applied power to the pickup coil; and applying a correction to the sensor response corresponding to the respective measured first and second resonance impedance spectrum to mitigate for environmental parameters.
Abstract:
A system that includes a sensor for measuring a resonant impedance spectral response of an inductor-capacitor-resistor (LCR) resonator and correlating the measured response of one or more spectral parameters to one or more characteristics of the fluid. Such characteristics may be the age or health of the fluid and/or the identification of and concentration of components in the fluid.
Abstract:
A method of recovering a target from a sample is provided. The method of recovering the target follows different steps. The steps include providing a binding element, wherein the binding elements are immobilized on a solid support, adding the sample comprising the target to the binding element to form a binding element-target complex; washing the binding element-target complex; and eluting the target from the binding element-target complex. The system for reversible detection of target in a range from 2 to 1,000,000 bind/release cycles is also provided.
Abstract:
Methods and sensors for selective fluid sensing are provided. A sensor includes a resonant inductor-capacitor-resistor (LCR) circuit and a sensing material disposed over a sensing region. The sensing region comprises at least a portion of the LCR circuit. Temperature-dependent response coefficients of inductance L, capacitance C, and resistance R properties of the LCR circuit and the sensing material are at least approximately 5 percent different from one another. The difference in the temperature-dependent response coefficients of the properties of the LCR circuit and the sensing material enables the sensor to selectively detect analyte fluids from an analyzed fluid mixture substantially independent of temperature.
Abstract:
Methods for selecting a binding-element are provided. The method comprised of different steps. A first mixture is formed using at least one target molecule and a plurality of oligomers, followed by incubating the first mixture to form a second mixture comprising at least one target-bound oligomer and at least one target-unbound oligomer. Then a first accelerator is added to cleave the target-unbound oligomer and the target-bound oligomer is separated from the target molecule. This is followed by addition of a second accelerator for ligation, and a third accelerator for amplification followed by sequencing and post sequence analysis to select the binding-element.
Abstract:
An impedance analyzer is provided. The analyzer includes a signal excitation generator comprising a digital to analog converter, where a transfer function of the digital to analog converter from digital to analog is programmable. The impedance analyzer further includes a receiver comprising a low noise amplifier (LNA) and an analog to digital converter (ADC), where the LNA is a current to voltage converter; where the programmable digital to analog transfer function is implemented by a direct digital synthesizer (DDS) and a voltage mode digital to analog converter, or a digital phase locked loop (PLL), or both. Further, a multivariable sensor node having an impedance analyzer is provided. Furthermore, a multivariable sensor network having a plurality of multivariable sensor nodes is provided.
Abstract:
A method for multivariable measurements using a single-chip impedance analyzer includes providing a sensor, exposing the sensor to an environmental parameter, determining a complex impedance of the sensor over a measured spectral frequency range of the sensor, and monitoring at least three spectral parameters of the sensor.
Abstract:
Methods and sensors for selective fluid sensing are provided. Each sensor includes a resonant inductor-capacitor-resistor (LCR) sensor that is coated with a sensing material. In order to collect data, an impedance spectrum is acquired over a relatively narrow frequency range, such as the resonant frequency range of the LCR circuit. A multivariate signature may be calculated from the acquired spectrum to discern the presence of certain fluids and/or fluid mixtures. The presence of fluids is detected by measuring the changes in dielectric, dimensional, resistance, charge transfer, and other changes in the properties of the materials employed by observing the changes in the resonant electronic properties of the circuit. By using a mathematical procedure, such as principal components analysis (PCA) and others, multiple fluids and mixtures can be detected in the presence of one another, even in a high humidity environment or an environment wherein one or more fluids has a substantially higher concentration (e.g. 10×, 1,000,000×) compared to other components in the mixture.
Abstract:
An electrochemical gas sensor for multi-gas analysis of a fluid sample includes an electrochemical gas sensing element and a data collection component. The data collection component is configured to cycle the electrochemical gas sensing element between first excitation and signal detection values and second excitation and signal detection values at a predetermined time constant, and to measure responses of the electrochemical gas sensor to the fluid sample at the first excitation and signal detection values and the second excitation and signal detection values wherein the responses of the electrochemical gas sensor to the fluid sample at the first excitation and signal detection values and the second excitation and signal detection values are indicative of identities, respective concentrations, or a combination thereof, of at least two analyte gases of the fluid sample.