摘要:
A process for producing a separator-electrolyte layer for use in a lithium battery, comprising: (a) providing a porous separator; (b) providing a quasi-solid electrolyte containing a lithium salt dissolved in a first liquid solvent up to a first concentration no less than 3 M; and (c) coating or impregnating the separator with the electrolyte to obtain the separator-electrolyte layer with a final concentration ≧the first concentration so that the electrolyte exhibits a vapor pressure less than 0.01 kPa when measured at 20° C., a vapor pressure less than 60% of that of the first liquid solvent alone, a flash point at least 20 degrees Celsius higher than a flash point of the first liquid solvent alone, a flash point higher than 150° C., or no detectable flash point. A battery using such a separator-electrolyte is non-flammable and safe, has a long cycle life, high capacity, and high energy density.
摘要:
A rechargeable lithium cell comprising: (a) an anode comprising a prelithiated lithium storage material or a combination of a lithium storage material and a lithium ion source; (b) a hybrid cathode active material composed of a meso-porous structure of a carbon, graphite, metal, or conductive polymer and a phthalocyanine compound, wherein the meso-porous structure is in an amount of from 1% to 99% by weight based on the total weight of the meso-porous structure and the phthalocyanine combined, and wherein the meso-porous structure has a pore with a size from 2 nm to 50 nm to accommodate phthalocyanine compound therein; and (c) an electrolyte or electrolyte/separator assembly. This secondary cell exhibits a long cycle life and the best cathode specific capacity and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.
摘要:
A rechargeable lithium cell comprising: (a) an anode comprising an anode active material; (b) a cathode comprising a hybrid cathode active material composed of an electrically conductive substrate and a phthalocyanine compound chemically bonded to or immobilized by the conductive substrate, wherein the phthalocyanine compound is in an amount of from 1% to 99% by weight based on the total weight of the conductive substrate and the phthalocyanine compound combined; and (c) electrolyte or a combination of electrolyte and a porous separator, wherein the separator is disposed between the anode and the cathode and the electrolyte is in ionic contact with the anode and the cathode. This secondary cell exhibits a long cycle life, the best cathode specific capacity, and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.
摘要:
A nano graphene-enabled vanadium oxide composite composition for use as a lithium battery cathode active material, wherein the composite composition is formed of one or a plurality of graphene, graphene oxide, or graphene fluoride sheets or platelets and a plurality of nano-particles, nano-rods, nano-wires, nano-sheets, and/or nano-belts of a vanadium oxide with a size smaller than 100 nm (preferably smaller than 20 nm, further preferably smaller than 10 nm, and most preferably smaller than 5 nm), and wherein the graphene, graphene oxide, or graphene fluoride (having a thickness
摘要:
Disclosed is an electrode material comprising a phthalocyanine compound encapsulated by a protective material, preferably in a core-shell structure with a phthalocyanine compound core and a protective material shell. Also disclosed is a rechargeable lithium cell comprising: (a) an anode; (b) a cathode comprising an encapsulated or protected phthalocyanine compound as a cathode active material; and (c) a porous separator disposed between the anode and the cathode and/or an electrolyte in ionic contact with the anode and the cathode. This secondary cell exhibits a long cycle life, the best cathode specific capacity, and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.
摘要:
A nano graphene-enhanced particulate for use as a lithium battery cathode active material, wherein the particulate is formed of a single or a plurality of graphene sheets and a plurality of fine cathode active material particles with a size smaller than 10 μm (preferably sub-micron or nano-scaled), and the graphene sheets and the particles are mutually bonded or agglomerated into an individual discrete particulate with at least a graphene sheet embracing the cathode active material particles, and wherein the particulate has an electrical conductivity no less than 10−4 S/cm and the graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the cathode active material combined.
摘要:
Disclosed is a process for producing graphene-silicon nanowire hybrid material, comprising: (A) preparing a catalyst metal-coated mixture mass, which includes mixing graphene sheets with micron or sub-micron scaled silicon particles to form a mixture and depositing a nano-scaled catalytic metal onto surfaces of the graphene sheets and/or silicon particles; and (B) exposing the catalyst metal-coated mixture mass to a high temperature environment (preferably from 300° C. to 2,000° C., more preferably from 400° C. to 1,500° C., and most preferably from 500° C. to 1,200° C.) for a period of time sufficient to enable a catalytic metal-catalyzed growth of multiple silicon nanowires using the silicon particles as a feed material to form the graphene-silicon nanowire hybrid material composition. An optional etching or separating procedure may be conducted to remove catalytic metal or graphene from the Si nanowires.
摘要:
Disclosed is a process for producing silicon nanowires having a diameter or thickness less than 100 nm, comprising: (A) preparing a solid silicon source material in a particulate form having a size from 0.2 μm to 20 μm or in a porous structure form having a specific surface area greater than 50 m2/g; (B) depositing a catalytic metal, in the form of nano particles having a size from 0.5 nm to 100 nm or a coating having a thickness from 1 nm to 100 nm, onto surfaces of the silicon source material to form a catalyst metal-coated silicon material; and (C) exposing the catalyst metal-coated silicon material to a high temperature environment, from 300° C. to 2,000° C., for a period of time sufficient to enable a catalytic metal-catalyzed growth of multiple silicon nanowires from the silicon source material.
摘要:
A process for producing an alkali metal battery, comprising: (a) preparing multiple conductive porous layers (having at least 80% by volume of pores), multiple wet anode layers of an anode active material mixed with a liquid electrolyte, and multiple wet cathode layers of a cathode active material mixed with a liquid electrolyte; (b) stacking and consolidating a desired number of the porous layers and a desired number of wet anode layers to form an anode electrode; (c) placing a porous separator layer in contact with the anode electrode; (d) preparing a cathode electrode in a similar manner than anode; and (e) assembling all the components in a housing to produce the battery; wherein the anode active material has a material mass loading no less than 20 mg/cm2 in the anode and/or the cathode active material has a material mass loading no less than 30 mg/cm2 in the cathode electrode.
摘要:
Process for producing an alkali metal-sulfur battery, comprising: (a) Preparing a first conductive porous structure; (b) Preparing a second conductive porous structure; (c) Injecting or impregnating a first suspension into pores of the first conductive porous structure to form an anode electrode, wherein the first suspension contains an anode active material, an optional conductive additive, and a first electrolyte; (d) Injecting or impregnating a second suspension into pores of the second conductive porous structure to form a cathode electrode, wherein the second suspension contains a cathode active material (selected from sulfur, lithium polysulfide, sodium polysulfide, sulfur-polymer composite, organo-sulfide, sulfur-carbon composite, sulfur-graphene composite, or a combination thereof), an optional conductive additive, and a second electrolyte; and (e) Assembling the anode electrode, a separator, and a cathode electrode into the battery.