Process for producing non-flammable quasi-solid electrolyte and electrolyte-separator for lithium battery applications
    51.
    发明申请
    Process for producing non-flammable quasi-solid electrolyte and electrolyte-separator for lithium battery applications 有权
    生产用于锂电池应用的非易燃准固体电解质和电解液分离器的方法

    公开(公告)号:US20150024121A1

    公开(公告)日:2015-01-22

    申请号:US13987396

    申请日:2013-07-22

    摘要: A process for producing a separator-electrolyte layer for use in a lithium battery, comprising: (a) providing a porous separator; (b) providing a quasi-solid electrolyte containing a lithium salt dissolved in a first liquid solvent up to a first concentration no less than 3 M; and (c) coating or impregnating the separator with the electrolyte to obtain the separator-electrolyte layer with a final concentration ≧the first concentration so that the electrolyte exhibits a vapor pressure less than 0.01 kPa when measured at 20° C., a vapor pressure less than 60% of that of the first liquid solvent alone, a flash point at least 20 degrees Celsius higher than a flash point of the first liquid solvent alone, a flash point higher than 150° C., or no detectable flash point. A battery using such a separator-electrolyte is non-flammable and safe, has a long cycle life, high capacity, and high energy density.

    摘要翻译: 一种用于生产用于锂电池的隔板 - 电解质层的方法,包括:(a)提供多孔隔板; (b)提供含有溶解在第一液体溶剂中的锂盐的准固态电解质,其浓度不低于3M; 和(c)用电解质涂覆或浸渍隔膜,以获得最终浓度≧第一浓度的隔板 - 电解质层,使得当在20℃下测量时,电解质的蒸气压小于0.01kPa,蒸气压 小于第一液体溶剂的60%,闪点比单独的第一液体溶剂的闪点高至少20摄氏度,闪点高于150℃,或没有可检测到的闪点。 使用这种隔膜 - 电解质的电池是不可燃和安全的,具有长的循环寿命,高容量和高能量密度。

    Rechargeable lithium cell having a chemically bonded phthalocyanine compound cathode
    53.
    发明授权
    Rechargeable lithium cell having a chemically bonded phthalocyanine compound cathode 有权
    具有化学键合的酞菁化合物阴极的可充电锂电池

    公开(公告)号:US09362555B2

    公开(公告)日:2016-06-07

    申请号:US13573275

    申请日:2012-09-07

    摘要: A rechargeable lithium cell comprising: (a) an anode comprising an anode active material; (b) a cathode comprising a hybrid cathode active material composed of an electrically conductive substrate and a phthalocyanine compound chemically bonded to or immobilized by the conductive substrate, wherein the phthalocyanine compound is in an amount of from 1% to 99% by weight based on the total weight of the conductive substrate and the phthalocyanine compound combined; and (c) electrolyte or a combination of electrolyte and a porous separator, wherein the separator is disposed between the anode and the cathode and the electrolyte is in ionic contact with the anode and the cathode. This secondary cell exhibits a long cycle life, the best cathode specific capacity, and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.

    摘要翻译: 一种可再充电锂电池,包括:(a)包含阳极活性材料的阳极; (b)阴极,其包含由导电性基材和由所述导电性基材化学结合或固定的酞菁化合物构成的混合阴极活性物质,其中,所述酞菁化合物的量为1〜99重量%,基于 导电基体和酞菁化合物的总重量合并; 和(c)电解质或电解质和多孔分离器的组合,其中分离器设置在阳极和阴极之间,并且电解质与阳极和阴极离子接触。 该二次电池显示出所有可再充电锂离子电池的循环寿命长,最佳阴极比容量和最佳电池级比能。

    Graphene-Enhanced cathode materials for lithium batteries
    56.
    发明申请
    Graphene-Enhanced cathode materials for lithium batteries 有权
    石墨烯 - 用于锂电池的增强型阴极材料

    公开(公告)号:US20120058397A1

    公开(公告)日:2012-03-08

    申请号:US12807471

    申请日:2010-09-07

    IPC分类号: H01M4/583

    摘要: A nano graphene-enhanced particulate for use as a lithium battery cathode active material, wherein the particulate is formed of a single or a plurality of graphene sheets and a plurality of fine cathode active material particles with a size smaller than 10 μm (preferably sub-micron or nano-scaled), and the graphene sheets and the particles are mutually bonded or agglomerated into an individual discrete particulate with at least a graphene sheet embracing the cathode active material particles, and wherein the particulate has an electrical conductivity no less than 10−4 S/cm and the graphene is in an amount of from 0.01% to 30% by weight based on the total weight of graphene and the cathode active material combined.

    摘要翻译: 一种用作锂电池正极活性材料的纳米石墨烯增强颗粒,其中所述颗粒由单个或多个石墨烯片和多个尺寸小于10μm的精细阴极活性材料颗粒形成(优选地, 微米或纳米级),并且石墨烯片和颗粒与至少包含正极活性物质颗粒的石墨烯片相互结合或附聚到单独的离散颗粒中,并且其中颗粒的导电率不小于10- 4S / cm,并且所述石墨烯的量为基于石墨烯和阴极活性材料的总重量的0.01重量%至30重量%。

    Process for mass-producing silicon nanowires and silicon nanowire-graphene hybrid particulates
    57.
    发明申请
    Process for mass-producing silicon nanowires and silicon nanowire-graphene hybrid particulates 有权
    批量生产硅纳米线和硅纳米线 - 石墨烯杂化颗粒的方法

    公开(公告)号:US20160285084A1

    公开(公告)日:2016-09-29

    申请号:US14545108

    申请日:2015-03-27

    摘要: Disclosed is a process for producing graphene-silicon nanowire hybrid material, comprising: (A) preparing a catalyst metal-coated mixture mass, which includes mixing graphene sheets with micron or sub-micron scaled silicon particles to form a mixture and depositing a nano-scaled catalytic metal onto surfaces of the graphene sheets and/or silicon particles; and (B) exposing the catalyst metal-coated mixture mass to a high temperature environment (preferably from 300° C. to 2,000° C., more preferably from 400° C. to 1,500° C., and most preferably from 500° C. to 1,200° C.) for a period of time sufficient to enable a catalytic metal-catalyzed growth of multiple silicon nanowires using the silicon particles as a feed material to form the graphene-silicon nanowire hybrid material composition. An optional etching or separating procedure may be conducted to remove catalytic metal or graphene from the Si nanowires.

    摘要翻译: 公开了一种生产石墨烯 - 硅纳米线混合材料的方法,包括:(A)制备催化剂金属涂覆的混合物质量,其包括将石墨烯片与微米或亚微米级的硅颗粒混合以形成混合物, 石墨烯片和/或硅颗粒表面上的催化金属; 和(B)将催化剂金属涂覆的混合物物料暴露于高温环境(优选300℃至2000℃,更优选400℃至1,500℃,最优选500℃ 至1200℃)持续足以使得使用硅颗粒作为进料的催化金属催化的多个硅纳米线生长的时间以形成石墨烯 - 硅纳米线混合材料组合物。 可以进行任选的蚀刻或分离程序以从Si纳米线去除催化金属或石墨烯。

    Process for producing silicon nanowires directly from silicon particles
    58.
    发明申请
    Process for producing silicon nanowires directly from silicon particles 有权
    直接从硅颗粒生产硅纳米线的工艺

    公开(公告)号:US20160285083A1

    公开(公告)日:2016-09-29

    申请号:US14545106

    申请日:2015-03-27

    摘要: Disclosed is a process for producing silicon nanowires having a diameter or thickness less than 100 nm, comprising: (A) preparing a solid silicon source material in a particulate form having a size from 0.2 μm to 20 μm or in a porous structure form having a specific surface area greater than 50 m2/g; (B) depositing a catalytic metal, in the form of nano particles having a size from 0.5 nm to 100 nm or a coating having a thickness from 1 nm to 100 nm, onto surfaces of the silicon source material to form a catalyst metal-coated silicon material; and (C) exposing the catalyst metal-coated silicon material to a high temperature environment, from 300° C. to 2,000° C., for a period of time sufficient to enable a catalytic metal-catalyzed growth of multiple silicon nanowires from the silicon source material.

    摘要翻译: 公开了一种具有直径或厚度小于100nm的硅纳米线的方法,包括:(A)制备尺寸为0.2μm至20μm的颗粒形式的固体硅源材料或多孔结构形式,其具有 比表面积大于50 m2 / g; (B)将具有0.5nm至100nm尺寸的纳米颗粒形式的催化金属或厚度为1nm至100nm的涂层沉积到硅源材料的表面上以形成催化剂金属涂覆 硅材料; 和(C)将催化剂金属涂覆的硅材料暴露于高温环境,从300℃至2000℃,持续一段时间足以使得能够从硅中催化金属催化的多个硅纳米线的生长 源材料。

    Method of producing alkali metal or alkali-ion batteries having high volumetric and gravimetric energy densities

    公开(公告)号:US20170207489A1

    公开(公告)日:2017-07-20

    申请号:US14998514

    申请日:2016-01-15

    摘要: A process for producing an alkali metal battery, comprising: (a) preparing multiple conductive porous layers (having at least 80% by volume of pores), multiple wet anode layers of an anode active material mixed with a liquid electrolyte, and multiple wet cathode layers of a cathode active material mixed with a liquid electrolyte; (b) stacking and consolidating a desired number of the porous layers and a desired number of wet anode layers to form an anode electrode; (c) placing a porous separator layer in contact with the anode electrode; (d) preparing a cathode electrode in a similar manner than anode; and (e) assembling all the components in a housing to produce the battery; wherein the anode active material has a material mass loading no less than 20 mg/cm2 in the anode and/or the cathode active material has a material mass loading no less than 30 mg/cm2 in the cathode electrode.