OMNIDIRECTIONAL UV-IR REFLECTOR
    51.
    发明申请
    OMNIDIRECTIONAL UV-IR REFLECTOR 有权
    OMNIDIRECTIONAL UV-IR反射器

    公开(公告)号:US20110134515A1

    公开(公告)日:2011-06-09

    申请号:US13014398

    申请日:2011-01-26

    IPC分类号: G02B5/28

    摘要: The present invention provides an omnidirectional ultraviolet (UV)-infrared (IR) reflector. The omnidirectional UV-IR reflector includes a multilayer stack having at least three layers, the at least three layers having at least one first index of refraction material A1 and at least one second index of refraction layer B1. The at least one first index of refraction material layer and the at least one second index of refraction material layer can be alternately stacked on top of each other to provide the at least three layers. In addition, the at least one first index of refraction material layer and the at least one second index of refraction material layer each have a predefined thickness of dA1 and dB1, respectively, with the thickness dA1 not being generally equal to the dB1 thickness such that the multilayer stack has a non-periodic layered structure.

    摘要翻译: 本发明提供了全向紫外(UV) - 红外(IR)反射器。 全向UV-IR反射器包括具有至少三层的多层堆叠,所述至少三层具有至少一个第一折射材料折射率A1和至少一个第二折射率折射率层B1。 所述至少一个第一折射材料折射率层和所述至少一个第二折射材料折射率层可以交替地堆叠在彼此的顶部以提供所述至少三个层。 另外,折射材料层和至少一个第二折射材料层的至少一个第一折射率分别具有dA1和dB1的预定厚度,其厚度dA1通常不等于dB1厚度,使得 多层堆叠具有非周期性分层结构。

    Multilayer Photonic Structures
    52.
    发明申请
    Multilayer Photonic Structures 有权
    多层光子结构

    公开(公告)号:US20100208338A1

    公开(公告)日:2010-08-19

    申请号:US12686861

    申请日:2010-01-13

    IPC分类号: G02B5/28

    摘要: A multilayer photonic structure may include a plurality of coating layers of high index dielectric material of index of refraction nH and a plurality of coating layers of low index dielectric material of index of refraction nL alternately arranged with a first coating layer and a last coating layer of the multi-layer photonic structure comprise low index material. An index-thickness of each coating layer of the multilayer photonic structure is different than every other coating layer of the multilayer photonic structure. The multilayer photonic structure has a first high reflectivity bandwidth, a second high reflectivity bandwidth and a low reflectivity bandwidth wherein the low reflectivity bandwidth is positioned between the first high reflectivity bandwidth and the second high reflectivity bandwidth.

    摘要翻译: 多层光子结构可以包括多个折射率nH的高折射率介电材料的涂层和多个折射率nL低折射率介电材料的涂层,其交替地布置有第一涂层和最后的涂层 多层光子结构包括低折射率材料。 多层光子结构的每个涂层的折射率厚度与多层光子结构的每个其它涂层不同。 多层光子结构具有第一高反射率带宽,第二高反射率带宽和低反射率带宽,其中低反射率带宽位于第一高反射率带宽和第二高反射率带宽之间。

    NANOSCOPICALLY MODIFIED SUPERHYDROPHOBIC COATING
    53.
    发明申请
    NANOSCOPICALLY MODIFIED SUPERHYDROPHOBIC COATING 审中-公开
    纳米改性超级涂料

    公开(公告)号:US20090136741A1

    公开(公告)日:2009-05-28

    申请号:US11946592

    申请日:2007-11-28

    IPC分类号: B32B5/16 H01L21/316

    摘要: A process of forming a clear coat including the steps of providing hydrophobic nanoparticles by chemically modifying the surface of the nanoparticles, dispersing the hydrophobic nanoparticles in a solvent, combining the dispersed nanoparticles in the solvent with a clear coat material, and mixing the dispersed nanoparticles in a solvent with the clear coat material forming a clear coat having a transparency of at least 50 percent.

    摘要翻译: 一种形成透明涂层的方法,包括以下步骤:通过化学改性纳米颗粒的表面提供疏水纳米颗粒,将疏水性纳米颗粒分散在溶剂中,将分散的纳米颗粒与溶剂中的透明涂层材料结合,并将分散的纳米颗粒混合 具有透明涂层材料的溶剂形成透明度为至少50%的透明涂层。

    High-Ph synthesis of nanocomposite thermoelectric material
    54.
    发明授权
    High-Ph synthesis of nanocomposite thermoelectric material 有权
    高分子合成纳米复合热电材料

    公开(公告)号:US08535554B2

    公开(公告)日:2013-09-17

    申请号:US12843954

    申请日:2010-07-27

    IPC分类号: H01L29/12

    CPC分类号: H01L35/16 Y10T428/2991

    摘要: A process for forming thermoelectric nanoparticles includes the steps of providing a core material and a bismuth containing compound in a reverse micelle; providing a tellurium containing compound either in or not in a reverse micelle; reacting the bismuth containing compound with the tellurium containing compound in the presence of a base, forming a composite thermoelectric nanoparticle having a core and shell structure.

    摘要翻译: 形成热电纳米颗粒的方法包括在反胶束中提供芯材料和含铋化合物的步骤; 在反胶束中或在反胶束中提供含碲化合物; 使含铋化合物与含碲化合物在碱的存在下反应,形成具有核和壳结构的复合热电纳米颗粒。

    HIGH-Ph SYNTHESIS OF NANOCOMPOSITE THERMOELECTRIC MATERIAL
    55.
    发明申请
    HIGH-Ph SYNTHESIS OF NANOCOMPOSITE THERMOELECTRIC MATERIAL 有权
    高分子纳米复合材料热电材料的合成

    公开(公告)号:US20120025130A1

    公开(公告)日:2012-02-02

    申请号:US12843954

    申请日:2010-07-27

    IPC分类号: C09K5/00

    CPC分类号: H01L35/16 Y10T428/2991

    摘要: A process for forming thermoelectric nanoparticles includes the steps of providing a core material and a bismuth containing compound in a reverse micelle; providing a tellurium containing compound either in or not in a reverse micelle; reacting the bismuth containing compound with the tellurium containing compound in the presence of a base, forming a composite thermoelectric nanoparticle having a core and shell structure.

    摘要翻译: 形成热电纳米颗粒的方法包括在反胶束中提供芯材料和含铋化合物的步骤; 在反胶束中或在反胶束中提供含碲化合物; 使含铋化合物与含碲化合物在碱的存在下反应,形成具有核和壳结构的复合热电纳米颗粒。

    METAL TELLURIDE NANOCRYSTALS AND SYNTHESIS THEREOF
    56.
    发明申请
    METAL TELLURIDE NANOCRYSTALS AND SYNTHESIS THEREOF 失效
    金属陶瓷纳米晶及其合成

    公开(公告)号:US20080036101A1

    公开(公告)日:2008-02-14

    申请号:US11464265

    申请日:2006-08-14

    IPC分类号: H01L21/00

    摘要: A process for synthesizing a metal telluride is provided that includes the dissolution of a metal precursor in a solvent containing a ligand to form a metal-ligand complex soluble in the solvent. The metal-ligand complex is then reacted with a telluride-containing reagent to form metal telluride domains having a mean linear dimension of from 2 to 40 nanometers. NaHTe represents a well-suited telluride reagent. A composition is provided that includes a plurality of metal telluride crystalline domains (PbTe)1-x-y(SnTe)x(Bi2Te3)y   (I) having a mean linear dimension of from 2 to 40 nanometers inclusive where x is between 0 and 1 inclusive and y is between 0 and 1 inclusive with the proviso that x+y is less than or equal to 1. Each of the metal telluride crystalline domains has a surface passivated with a saccharide moiety or a polydentate carboxylate. A densified mass having a density of greater than 95% of the theoretical density includes a plurality of lead telluride, tin telluride, bismuth telluride, or a combination thereof of domains having a mean linear dimension of from 2 to 40 nanometers inclusive that have been subjected to hot isotactic pressing.

    摘要翻译: 提供了合成金属碲化物的方法,其包括将金属前体溶解在含有配体的溶剂中以形成可溶于溶剂的金属 - 配体络合物。 然后将金属 - 配体络合物与含碲化物的试剂反应以形成平均直线尺寸为2-40纳米的金属碲化物畴。 NaHTe代表一种非常适合的碲化物试剂。 提供了一种组合物,其包括多个金属碲化物晶畴<?in-line-formula description =“In-line Formulas”end =“lead”→>(PbTe)1-xy )(I)<βin-line-formula description =“(”1“)< 平均线性尺寸为2至40纳米,其中x在0和1之间,其中x在0和1之间,其中y在0和1之间,其中条件是x + y小于 或等于1.金属碲化物结晶域中的每一个具有用糖部分或多齿羧酸酯钝化的表面。 具有大于理论密度的95%的密度的致密物质包括多个引线碲化物,碲化锡,碲化铋或其具有平均线性尺寸为2至40纳米的畴的组合,其已经经受 到热等压挤压。

    Nanostructured bulk thermoelectric material
    57.
    发明申请
    Nanostructured bulk thermoelectric material 有权
    纳米结构体热电材料

    公开(公告)号:US20060118158A1

    公开(公告)日:2006-06-08

    申请号:US11120731

    申请日:2005-05-03

    摘要: A thermoelectric material comprises two or more components, at least one of which is a thermoelectric material. The first component is nanostructured, for example as an electrically conducting nanostructured network, and can include nanowires, nanoparticles, or other nanostructures of the first component. The second component may comprise an electrical insulator, such as an inorganic oxide, other electrical insulator, other low thermal conductivity material, voids, air-filled gaps, and the like. Additional components may be included, for example to improve mechanical properties. Quantum size effects within the nanostructured first component can advantageously modify the thermoelectric properties of the first component. In other examples, the second component may be a thermoelectric material, and additional components may be included.

    摘要翻译: 热电材料包括两种或多种组分,其中至少一种是热电材料。 第一组分是纳米结构的,例如作为导电纳米结构网络,并且可以包括第一组分的纳米线,纳米颗粒或其他纳米结构。 第二部件可以包括电绝缘体,例如无机氧化物,其它电绝缘体,其它低导热材料,空隙,充满空气的间隙等。 可以包括另外的组分,例如以改善机械性能。 在纳米结构化的第一组分内的量子尺寸效应可以有利地改变第一组分的热电性质。 在其它实例中,第二组分可以是热电材料,并且可以包括另外的组分。

    Method and system for forming copper thin film
    58.
    发明授权
    Method and system for forming copper thin film 有权
    形成铜薄膜的方法和系统

    公开(公告)号:US06726954B2

    公开(公告)日:2004-04-27

    申请号:US09874066

    申请日:2001-06-06

    IPC分类号: C23C1618

    摘要: In a method and a system for forming a copper thin film in which a raw material gas is introduced into a substrate processing chamber storing a substrate and being under a reduced pressure to form a copper thin film on the substrate, an addition gas is introduced into the substrate processing chamber in addition to the raw material gas at the initial stage of deposition. Thereafter, the introduction of the addition gas is stopped, while the introduction of the raw material gas is continued. Alternatively, an addition gas is introduced into the substrate processing chamber before the start of the deposition process, and the addition gas is introduced into the substrate processing chamber in addition to the raw material gas at the initial stage of deposition. Thereafter, the introduction of the addition gas is stopped, while the introduction of the raw material gas is continued.

    摘要翻译: 在形成铜薄膜的方法和系统中,其中原料气体被引入存储基板并在减压下的基板处理室中,以在基板上形成铜薄膜,将加成气体引入 基板处理室除了在沉积的初始阶段的原料气体之外。 此后,停止引入加料气体,同时继续引入原料气体。 或者,在开始沉积处理之前,将添加气体引入到基板处理室中,并且在沉积的初始阶段除了原料气体之外还将添加气体引入基板处理室。 此后,停止引入加料气体,同时继续引入原料气体。

    Method of producing thermoelectric material

    公开(公告)号:US09978924B2

    公开(公告)日:2018-05-22

    申请号:US13166860

    申请日:2011-06-23

    摘要: A process for manufacturing a nanocomposite thermoelectric material having a plurality of nanoparticle inclusions. The process includes determining a material composition to be investigated for the nanocomposite thermoelectric material, the material composition including a conductive bulk material and a nanoparticle material. In addition, a range of surface roughness values for the insulating nanoparticle material that can be obtained using current state of the art manufacturing techniques is determined. Thereafter, a plurality of Seebeck coefficients, electrical resistivity values, thermal conductivity values and figure of merit values as a function of the range of nanoparticle material surface roughness values is calculated. Based on these calculated values, a nanocomposite thermoelectric material composition or ranges of compositions is/are selected and manufactured.