Abstract:
Embodiments of an enhanced node B (eNB), user equipment (UE) and methods of signaling for proximity services and device-to-device (D2D) discovery in an LTE network are generally described herein. In some embodiments, the eNB may transmit signaling to indicate D2D discovery zone configuration to proximity service (ProSe) enabled UEs. The signaling may indicate time and frequency resources and a periodicity of a discovery zone and may indicate operational parameters for the discovery zone. The resources of the D2D discovery zone may be allocated for D2D discovery signal transmission by the ProSe-enabled UEs.
Abstract:
Apparatuses, methods, and computer readable media for transmitting a high-efficiency signal (HE-SIG) field for small and large bandwidth allocations are disclosed. An apparatus for a high-efficiency wireless local-area network (HEW) master station is disclosed. The apparatus may include circuitry configured to transmit a high-efficiency (HE) signal (SIG) A (HE-SIG-A) field comprising common information to a plurality of HEW stations, wherein the HE-SIG-A is to be transmitted within a first sub-channel; and transmit a HE long-training field (HE-LTF) and a HE-SIG-B to a first HEW station of the plurality of HEW stations, wherein the HE-LTF and the HE-SIG-B are to be interleaved on subcarriers of a second sub-channel, wherein the HE-SIG-B comprises a first portion of station specific information for the first HEW station, and where the HE-LTF and the HE-SIG-B are to be transmitted in accordance with beam-forming within the second sub-channel in accordance with orthogonal frequency division multi-access (OFF-DMA).
Abstract:
Novel adaptive silencing schemes for device-to-device (D2D) discovery based on loading conditions in a discovery zone are disclosed herein. These adaptive silencing schemes can be used to mitigate interference and data collisions in networks where D2D connections can be formed. In some embodiments, a silencing factor is used to probabilistically determine whether a user equipment (UE) will transmit one or more D2D discovery signals in the discovery zone. Loading conditions in a current discovery zone can be estimated using several different approaches and metrics described herein. The silencing factor can be increased or decreased for a subsequent discovery zone based on the values of one or more of the metrics described herein for the current discovery zone.
Abstract:
A wireless communication device comprises a transceiver to communicate directly with one or more separate wireless devices in accordance with a WiFi communication protocol, and a controller. The controller is configured to initiate transmission of information using the transceiver upon expiration of a first contention window (CW) count value, detect whether the transmission is successful, change the CW count value to a second CW count value when the transmission is unsuccessful, and change the CW count value from the first CW count value to a third CW count value when the transmission is successful, wherein the third CW count value is a maximum value of one of the first CW count value divided by a specified binary number or a specified minimum CW count value.
Abstract:
Embodiments of the present disclosure are directed towards devices and methods for discovering and waking up dormant access nodes in cellular networks. In one embodiment, the dormant access nodes passively participate in a device-to-device discovery process to identify potential user equipment nearby. Upon identifying a potential user equipment, the dormant access node may wake itself up and inform a serving access node that that is able to service the user equipment. In another embodiment, dormant access nodes may transmit a discovery message periodically. Upon receiving the discovery message a user equipment may report the availability of the dormant access node to its serving access node.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (“UE”) and an evolved Node Bs (“eNBs”) in a plurality of frequency bands. An eNB may transmit cross-carrier, cross-subframe scheduling information to a UE in a licensed frequency band. In response reception of the scheduling information, the UE may sense a wireless transmission medium to determine if the medium is idle. If the medium is idle, the UE may generate and transmit a request to reserve the medium in the unlicensed frequency band (e.g., a Clear-to-Send message). The eNB may transmit downlink data to the UE in the unlicensed frequency band. Other embodiments may be described and/or claimed.
Abstract:
Systems and methods of performing a RACH procedure in a MulteFire scenario are described. An eMTC UE communicates with an eNB on an anchor channel at a predetermined frequency of an unlicensed band and data channels on other frequency hopping channels of the unlicensed band. The UE receives a PBCH signal with System Information Broadcast Anchor (SIB-A-MF) scheduling information, and a SIB-A-MF after the PBCH. The SIB-A-MF indicates a RAC) resource configuration for a RACH procedure and dwell time of the data channels. The dwell time of the anchor channel is smaller than that of the data channels. The anchor channel includes a UL RACH resource for transmission of a RACH Request. The UE transmits UL RACH messages on UL resources indicated by the SIB-A-MF and receives DL RACH messages on different data channels.
Abstract:
Embodiments of enabling a secondary cell in a massive MIMO system are generally described herein. An example apparatus of UE may include memory and processing circuitry to configure a MIMO transceiver to establish primary cell transmit and receive channels for communication with an eNodeB, and to receive a secondary cell addition signal that includes a preamble index for a secondary cell. The processing circuitry further configures the MIMO transceiver to receive beam reference signals (BRS), and select one of the BRS from the eNodeB as a secondary cell transmit channel for the secondary cell based on detected BRS receive power. The processing circuitry further configures the MIMO transceiver to provide information for the selected BRS, and provide xPRACH transmissions that include a transmit index to the eNodeB. The processing circuitry further configures the MIMO transceiver to receive selection of one of the xPRACH transmissions as a secondary cell receive channel.
Abstract:
An apparatus and method for CSI reporting in the unlicensed band are described. CRS-RSs are transmitted from a RAN in narrowband data channels in the unlicensed band to an eMTC UE. The UE determines the CQI and PMI from the CRS-RSs and transmits a periodic CSI report to the RAN that contains the CQI and PMI. The periodic CSI report is received at a nsfrel th subframe of a nmframeth mframe, where nmframe satisfies nmframe mod Npd,mframe=NOFFSET,mframe where Nmframe is a reporting period in terms of mframes and NOFFSET,mframe is a reporting period offset in terms of mframes, and nsfrel satisfies nsfrel−20=NOFFSET,CQI where NOFFSET,CQI is a reporting period offset in subframes.
Abstract:
Systems and methods of beam reporting for multiple DL processes are described. A UE receives a beam management processes configuration that provides information about beam management reference signals for beam management procedures. The UE transmits a UE capability report that indicates beam management capabilities of the UE and, later, an indication of whether the UE intends to engage in beam refinement. The UE measures the beam management reference signals and receives a beam reporting message that indicates at least one of the beam management procedures to report. In response, the UE transmits the beam report. The beam report contains beam management reference signal measurements of the beam management procedures indicated by the beam reporting message.