摘要:
By appropriately orienting the channel length direction with respect to the crystallographic characteristics of the silicon layer, the stress-inducing effects of strained silicon/carbon material may be significantly enhanced compared to conventional techniques. In one illustrative embodiment, the channel may be oriented along the direction for a (100) surface orientation, thereby providing an electron mobility increase of approximately a factor of four.
摘要:
By removing an outer spacer, used for the formation of highly complex lateral dopant profiles, prior to the formation of metal silicide, a high degree of process compatibility with conventional processes is obtained, while at the same time a contact liner layer may be positioned more closely to the channel region, thereby allowing a highly efficient stress transfer mechanism for creating a corresponding strain in the channel region.
摘要:
By performing a sequence of selective epitaxial growth processes with at least two different species, or by introducing a first dopant species prior to the epitaxial growth of a drain and source region, a halo region may be formed in a highly efficient manner, while at the same time the degree of lattice damage in the epitaxially grown semiconductor region is maintained at a low level.
摘要:
Methods and provided for fabricating a semiconductor IC having a hardened shallow trench isolation (STI). In accordance with one embodiment the method includes providing a semiconductor substrate and forming an etch mask having an opening exposing a portion the semiconductor substrate. The exposed portion is etched to form a trench extending into the semiconductor substrate and an oxide is deposited to at least partially fill the trench. At least the surface portion of the oxide is plasma nitrided to form a nitrided oxide layer and then the etch mask is removed.
摘要:
By forming an etch control material with increased thickness on a first stressed dielectric layer in a dual stress liner approach, the surface topography may be smoothed prior to the deposition of the second stressed dielectric material, thereby allowing the deposition of an increased amount of stressed material while not contributing to yield loss caused by deposition-related defects.
摘要:
By forming an etch control material with increased thickness on a first stressed dielectric layer in a dual stress liner approach, the surface topography may be smoothed prior to the deposition of the second stressed dielectric material, thereby allowing the deposition of an increased amount of stressed material while not contributing to yield loss caused by deposition-related defects.
摘要:
A sidewall spacer structure is formed adjacent to a gate structure whereby a material forming an outer surface of the sidewall spacer structure contains nitrogen. Subsequent to its formation the sidewall spacer structure is annealed to harden the sidewall spacer structure from a subsequent cleaning process. An epitaxial layer is formed subsequent to the cleaning process.
摘要:
By substantially amorphizing a selectively epitaxially grown silicon layer used for forming a raised drain and source region and a portion of the underlying substrate, or just the surface region of the substrate (prior to growing the silicon overlayer), the number of interface defects located between the grown silicon layer and the initial substrate surface may be significantly reduced. Consequently, deleterious effects such as charge carrier gettering or creating diffusion paths for dopants may be suppressed.
摘要:
A first gate structure and a second gate structure are formed overlying a semiconductor substrate. A first protective layer is formed overlying the first gate structure and an associate source drain region. A first epitaxial layer is formed overlying the second source drain prior to removal of the first protective layer.
摘要:
By substantially amorphizing a selectively epitaxially grown silicon layer used for forming a raised drain and source region and a portion of the underlying substrate, or just the surface region of the substrate (prior to growing the silicon overlayer), the number of interface defects located between the grown silicon layer and the initial substrate surface may be significantly reduced. Consequently, deleterious effects such as charge carrier gettering or creating diffusion paths for dopants may be suppressed.