Abstract:
According to one embodiment, a liquid crystal display device includes a first substrate including a cross-shaped pixel electrode which includes a main pixel electrode and a sub-pixel electrode, and a second substrate including a common electrode which includes main common electrodes and sub-common electrodes. A first horizontal inter-electrode distance between the main pixel electrode and the main common electrode is less than a second horizontal inter-electrode distance between the sub-pixel electrode and the sub-common electrode and is greater than a vertical inter-electrode distance between the main pixel electrode and the main common electrode.
Abstract:
In one embodiment, a liquid crystal display device includes a first substrate and a second substrate. The first substrate includes a first gate line and a second gate line respectively extending in a first direction. A main pixel electrode is arranged between the first gate line and the second gate line and extending in a second direction orthogonally crossing the first direction. A pair of sub-common electrodes respectively faces the first gate line and the second gate line through an insulating layer and extends in the first direction. The second substrate includes a main common electrode electrically connected with the sub-common electrode and arranged on both sides sandwiching the main pixel electrode. A liquid crystal layer is held between the first substrate and the second substrate.
Abstract:
A first substrate includes a first interlayer insulating film covering a switching element. A first main-common electrode is formed on the first interlayer insulating film. The first main-common electrode extends along a source line. A second interlayer insulating film covers the first main-common electrode. A second main-common electrode is formed on the second inter insulating film and extends so as to face the source line. The second main-common electrode is set to the same potential as the first main-common electrode. A main-pixel electrode connected with the switching element is formed on the second interlayer insulating film. A second substrate includes a third main-common electrode so as to face the second main-common electrode. The third main-common electrode is set to the same potential as the second main-common electrode.
Abstract:
According to one embodiment, a liquid crystal display device includes a first substrate including a first storage capacitance line and a second storage capacitance line, a gate line, a first source line and a second source line, a main pixel electrode which has a strip shape, a first sub-pixel electrode which is continuous with the main pixel electrode, a second sub-pixel electrode which is continuous with the main pixel electrode, and a first alignment film, a second substrate including second main common electrodes extending on both sides of the main pixel electrode, a second sub-common electrode which is continuous with the second main common electrodes, and a second alignment film, and a liquid crystal layer held between the first substrate and the second substrate.
Abstract:
A liquid crystal display device includes a first substrate and a second substrate. The first substrate includes a gate line and an auxiliary capacitance line extending in a first direction, a source line extending in a second direction orthogonally crossing the first direction, and a pixel electrode having a main pixel electrode arranged on the auxiliary capacitance line and extending in the first direction. The second substrate includes a common electrode having a main common electrode arranged above the gate line and extending in the first direction. A liquid crystal layer is held between the first substrate and the second substrate having liquid crystal molecules. The liquid crystal molecules are initially aligned in the first direction in a splay alignment state between the first substrate and the second substrate in a state where electric field is not formed between the pixel electrode and the common electrode.
Abstract:
According to one embodiment, a liquid crystal display device includes a first interlayer insulation film located above a first gate line and a second gate line, a first common electrode extending over the first interlayer insulation film, a second interlayer insulation film covering the first common electrode, and a first pixel electrode disposed on the second interlayer insulation film. The first common electrode extends, from a position opposed to the first pixel electrode, beyond the source line in the first direction and beyond the gate line in the second direction.
Abstract:
A liquid crystal display device includes a first substrate including gate lines and a storage capacitance line, a first source line and a second source line, a main pixel electrode which has a strip shape, a sub-pixel electrode which is continuous with the main pixel electrode and has a strip shape extending toward the first source line and the second source line, and a first alignment film, a second substrate including second main common electrodes extending on both sides of the main pixel electrode, second sub-common electrodes which are continuous with the second main common electrodes and extend on both sides of the sub-pixel electrode, and a second alignment film, and a liquid crystal layer held between the first substrate and the second substrate.
Abstract:
According to one embodiment, a liquid crystal display device includes, a first substrate including a switching element which is electrically connected to a gate line and a source line and includes a drain electrode opposed to a storage capacitance line, a pixel electrode which includes a main pixel electrode extending in a second direction and a sub-pixel electrode which extends in a first direction at a position inside a position above an edge of the drain electrode and is put in contact with the drain electrode, a second substrate including a common electrode, and a liquid crystal layer.
Abstract:
According to one embodiment, a display device includes a first substrate, a second substrate, and a liquid crystal layer, wherein the second substrate includes a first light-shielding member in a frame shape having a first opening overlapping an optical sensor, a light-shielding layer having a second opening overlapping the first opening, and a first pixel opening and a second pixel opening, the first light-shielding member has a first outer edge and a second outer edge elongated in a second direction, the first outer edge overlaps the light-shielding layer between the second opening and the first pixel opening in a planar view, and the second outer edge overlaps the light-shielding layer between the second opening and the second pixel opening in a planar view.
Abstract:
A liquid crystal display device includes a gate line, a source line, a first common electrode opposed to the gate line and the source line, an interlayer insulating film covering the first common electrode, a pixel electrode including a main pixel electrode and a sub-pixel electrode, the pixel electrode formed on the interlayer insulating film, a second common electrode formed on the interlayer insulating film. The second common electrode includes a second main common electrode which has intermittence at a position adjacent to the sub-pixel electrode, and a second sub-common electrode which has intermittence at a position adjacent to the main pixel electrode.