Abstract:
A receiver includes an antenna array that generates a plurality of received signals from at least a first remote transmitter and a second remote transmitter, the antenna array having a beam pattern that is controllable based on at least one control signal. A plurality of receiver sections process the plurality of received signals to generate a plurality of down-converted signals. A receiver processing module, generates the at least one control signal to control the beam pattern to a first pattern during a first time period for reception from the first remote transmitter, generates a first reception estimate based on the plurality of down-converted signals during the first time period, generates the at least one control signal to control the beam pattern to a second pattern during a second time period for reception from the second remote transmitter, generates a second reception estimate based on the plurality of down-converted signals during the second time period, and generates inbound data based on the first reception estimate and the second reception estimate.
Abstract:
A method and apparatus for assigning holding packets in a wireless communication system or network includes determining an invalid station address that corresponds to an invalid station and that does not correspond to the address of an affiliated station. The invalid station address is assigned to a holding packet. The holding packet is transmitted to allocate a transmit period to the invalid station. This generates a quiet time in the wireless communication system or network during the transmit period.
Abstract:
A method of space-time and/or space-frequency block encoding begins by receiving at least two complex signals, wherein each of the at least two complex signals includes a real component and an imaginary component. The method continues, for each of the at least two complex signals, by generating a swapped complex signal, wherein each of at least two swapped complex signals includes a swapped real component and a swapped imaginary component, wherein the swapped real component corresponds to the imaginary component and wherein the swapped imaginary component corresponds to the real component. The method continues by encoding the at least two complex signals and the at least two swapped complex signals to produce space-time and/or space-frequency block encoded signals.
Abstract:
A radio frequency transmitter includes a baseband transmit processing module, a mixing module, a power amplifier, a transmit power sense module, and a transmit power control module. The baseband transmit processing module is operably coupled to encode outbound data into outbound baseband signals in accordance with one of a plurality of encoding protocols. The mixing module is operably coupled to convert the outbound baseband signals into outbound radio frequency signals. The power amplifier is operably coupled to amplify the outbound RF signals prior to transmission to produce amplified outbound RF signals. The transmit power sense module is operably coupled to sense the amplified outbound RF signals to provide a transmit signal strength indication (TSSI). The transmit power control module is operably coupled to adjust gain of the baseband transmit processing module, the mixing module, and/or the power amplifier based on the TSSI and the particular encoding protocol used to produce the baseband signals.
Abstract:
A radio frequency transmitter includes a baseband transmit processing module, a mixing module, a power amplifier, a transmit power sense module, and a transmit power control module. The baseband transmit processing module is operably coupled to encode outbound data into outbound baseband signals in accordance with one of a plurality of encoding protocols. The mixing module is operably coupled to convert the outbound baseband signals into outbound radio frequency signals. The power amplifier is operably coupled to amplify the outbound RF signals prior to transmission to produce amplified outbound RF signals. The transmit power sense module is operably coupled to sense the amplified outbound RF signals to provide a transmit signal strength indication (TSSI). The transmit power control module is operably coupled to adjust gain of the baseband transmit processing module, the mixing module, and/or the power amplifier based on the TSSI and the particular encoding protocol used to produce the baseband signals.
Abstract:
Aspects of a method and system for redundancy-based decoding of video content in a wireless system are provided. A wireless receiver may determine whether a received multimedia data stream comprises video content and may select a redundancy-based decoder when video content is detected. The wireless receiver may be a WLAN receiver or a cellular receiver. Video content may be indicated by at least one flag in a preamble or a reserved field of the received multimedia data. The redundancy-based decoder may be a Viterbi decoder. The wireless receiver may enable a standard Viterbi decoder to decode portions of the multimedia data that do not comprise video content. The wireless receiver may generate at least one signal to select the redundancy-based decoder or the standard Viterbi decoder.
Abstract:
A method for generating a preamble of a frame for a multiple input multiple output (MIMO) wireless communication begins by, for each transmit antenna of the MIMO wireless communication, generating a carrier detect field, wherein, from transmit antenna to transmit antenna, the carrier detect field is cyclically shifted. The method continues by, for a first grouping of the transmit antennas of the MIMO wireless communication: generating a first guard interval following the carrier detect field; and generating at least one channel sounding field, wherein, from transmit antenna to transmit antenna in the first grouping, the at least one channel sounding field is cyclically shifted, and wherein the at least one channel sounding field follows the first guard interval. The method continues by, when the MIMO wireless communication includes more than the first grouping of the transmit antennas, for another grouping of the transmit antennas: generating at least one other channel sounding field, wherein, from transmit antenna to transmit antenna in the another grouping, the at least one other channel sounding field is cyclically shifted, and wherein the at least one other channel sounding field follows the at least one channel sounding field; and generating the first guard interval prior to the at least one other channel sounding field.
Abstract:
An integrated circuit radio transceiver and method therefor includes circuitry and logic for transmitting outgoing or ingoing communication signals as well as one of a digital data signal or a digital clock on the same antenna signal paths between a radio and a switch fabric. The switch fabric is operable to selectively couple any of a plurality of antennas to antenna signal paths based upon the digital data and the digital clock extracted from at least one of the antenna signal paths conducting RF signals. The switch fabric is further operable to extract all required power from at least one antenna signal path that may be used to conduct RF.
Abstract:
Aspects of a method and system for redundancy-based decoding of voice content in a wireless local area network (WLAN) system are provided. A WLAN receiver may determine whether a decoded portion of a received packet comprises voice content and may select a redundancy-based decoder to decode a remaining portion of the packet when voice content is detected. The redundancy-based decoder may be a Viterbi decoder. The redundancy-based decoder may be selected to decode a determined number of subsequent packets or to decode subsequent packets for a determined amount of time. After decoding the remaining portion of the packet and any subsequent packets, the WLAN receiver may select a standard Viterbi decoder to decode additional received packets. The WLAN receiver may generate at least one signal to select the redundancy-based decoder and the standard Viterbi decoder.
Abstract:
A radio frequency integrated circuit includes a transmitter section, and a receiver section. The receiver section includes a low noise amplifier, down conversion module, an orthogonal-normalizing module, and a baseband processor. The low noise amplifier is operably coupled to amplify the inbound RF signals to produce amplified inbound signals. The down conversion module is operably coupled to convert the amplified inbound RF signals into baseband in-phase components and baseband quadrature components. The orthogonal normalizing module is operably coupled to obtain a 1st and 2nd coefficients that are based on at least one of power of the baseband in-phase components, power of the baseband quadrature components, and/or cross-correlation between the baseband in-phase component and baseband quadrature components. The orthogonal normalizing module then normalizes an orthogonal relationship between the in-phase components and quadrature components based on the 1st and 2nd coefficients to produce normalized in-phase components and normalized quadrature components.