摘要:
A method of forming a semiconductor device includes forming a mandrel on top of a substrate; forming a first spacer adjacent to the mandrel on top of the substrate; forming a cut mask over the first spacer and the mandrel, such that the first spacer is partially exposed by the cut mask; partially removing the partially exposed first spacer; and etching the substrate to form a fin structure corresponding to the partially removed first spacer in the substrate.
摘要:
A method of forming fins for fin-shaped field effect transistor (finFET) devices includes forming a plurality of sacrificial mandrels over a semiconductor substrate. The plurality of sacrificial mandrels are spaced apart from one another by a first distance along a first direction, and by a second distance along a second direction. Spacer layers are formed on sidewalls of the sacrificial mandrels such that portions of the spacer layers between sacrificial mandrels along the first direction are merged together. Portions of the spacer layers between sacrificial mandrels along the second direction remain spaced apart. The sacrificial mandrels are removed. A pattern corresponding to the spacer layers is transferred into the semiconductor layers to form a plurality of semiconductor fins. Adjacent pairs of fins are merged with one another at locations corresponding to the merged spacer layers.
摘要:
In one exemplary embodiment of the invention, a method includes: providing an inversion mode varactor having a substrate, a backgate layer overlying the substrate, an insulating layer overlying the backgate layer, a semiconductor layer overlying the insulating layer and at least one metal-oxide semiconductor field effect transistor (MOSFET) device disposed upon the semiconductor layer, where the semiconductor layer includes a source region and a drain region, where the at least one MOSFET device includes a gate stack defining a channel between the source region and the drain region, where the gate stack has a gate dielectric layer overlying the semiconductor layer and a conductive layer overlying the gate dielectric layer; and applying a bias voltage to the backgate layer to form an inversion region in the semiconductor layer at an interface between the semiconductor layer and the insulating layer.
摘要:
A structure has at least one field effect transistor having a gate stack disposed between raised source drain structures that are adjacent to the gate stack. The gate stack and raised source drain structures are disposed on a surface of a semiconductor material. The structure further includes a layer of field dielectric overlying the gate stack and raised source drain structures and first contact metal and second contact metal extending through the layer of field dielectric. The first contact metal terminates in a first trench formed through a top surface of a first raised source drain structure, and the second contact metal terminates in a second trench formed through a top surface of a second raised source drain structure. Each trench has silicide formed on sidewalls and a bottom surface of at least a portion of the trench. Methods to fabricate the structure are also disclosed.
摘要:
An extremely thin SOI MOSFET device on an SOI substrate is provided with a back gate layer on a Si substrate superimposed by a thin BOX layer; an extremely thin SOI layer (ETSOI) on top of the thin BOX layer; and an FET device on the ETSOI layer having a gate stack insulated by spacers. The thin BOX is formed under the ETSOI channel, and is provided with a thicker dielectric under source and drain to reduce the source/drain to back gate parasitic capacitance. The thicker dielectric portion is self-aligned with the gate. A void within the thicker dielectric portion is formed under the source/drain region. The back gate is determined by a region of semiconductor damaged by implantation, and the formation of an insulating layer by lateral etch and back filling with dielectric.
摘要:
A method for fabricating a field effect transistor device includes forming a gate stack on a substrate, forming a spacer on the substrate, adjacent to the gate stack, forming a first portion of an active region on the substrate, the first portion of the active region having a first facet surface adjacent to the gate stack, forming a second portion of the active region on a portion of the first portion of the active region, the second portion of the active region having a second facet surface adjacent to the gate stack, the first facet surface and the second facet surface partially defining a cavity adjacent to the gate stack.
摘要:
In one exemplary embodiment, a semiconductor structure including: a SOI substrate having of a top silicon layer overlying an insulation layer, the insulation layer overlies a bottom silicon layer; a capacitor disposed at least partially in the insulation layer; a device disposed at least partially on the top silicon layer, where the device is coupled to a doped portion of the top silicon layer; a backside strap of first epitaxially-deposited material, at least a first portion of the backside strap underlies the doped portion of the top silicon layer, the backside strap is coupled to the doped portion of the top silicon layer at a first end of the backside strap and to the capacitor at a second end of the backside strap; and second epitaxially-deposited material that at least partially overlies the doped portion of the top silicon layer, the second epitaxially-deposited material further at least partially overlies the first portion.
摘要:
An FET device characterized as being an asymmetrical tunnel FET (TFET) is disclosed. The TFET includes a gate-stack, a channel region underneath the gate-stack, a first and a second junction adjoining the gate-stack and being capable for electrical continuity with the channel. The first junction and the second junction are of different conductivity types. The TFET also includes spacer formations in a manner that the spacer formation on one side of the gate-stack is thinner than on the other side.
摘要:
A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate; forming a spacer layer over the semiconductor substrate and patterned gate structure; removing horizontally disposed portions of the spacer layer so as to form a vertical sidewall spacer adjacent the patterned gate structure; and forming a raised source/drain (RSD) structure over the semiconductor substrate and adjacent the vertical sidewall spacer, wherein the RSD structure has a substantially vertical sidewall profile so as to abut the vertical sidewall spacer and produce one of a compressive and a tensile strain on a channel region of the semiconductor substrate below the patterned gate structure.
摘要:
Strained Si and strained SiGe on insulator devices, methods of manufacture and design structures is provided. The method includes growing an SiGe layer on a silicon on insulator wafer. The method further includes patterning the SiGe layer into PFET and NFET regions such that a strain in the SiGe layer in the PFET and NFET regions is relaxed. The method further includes amorphizing by ion implantation at least a portion of an Si layer directly underneath the SiGe layer. The method further includes performing a thermal anneal to recrystallize the Si layer such that a lattice constant is matched to that of the relaxed SiGe, thereby creating a tensile strain on the NFET region. The method further includes removing the SiGe layer from the NFET region. The method further includes performing a Ge process to convert the Si layer in the PFET region into compressively strained SiGe.