摘要:
Amplifying magnitude metric of received signals during iterative decoding of LDPC code and LDPC coded modulation. By appropriately selecting a metric coefficient value that is used to calculate the initial conditions when decoding LDPC coded signals, a significant reduction in BER may be achieved at certain SNRs. The appropriate selection of the metric coefficient value may be performed depending on the particular SNR at which a communication system is operating. By adjusting this metric coefficient value according to the given LDPC code, modulation, and noise variance, the overall performance of the decoding may be significantly improved. The convergence speed is slowed down so that the decoder will not go to the wrong codeword, and the moving range of the outputs of the decoder is restricted so that the output will not oscillate too much and will eventually move to the correct codeword.
摘要:
Low Density Parity Check (LDPC) code decoder using min*, min**, max* or max** and their respective inverses. For the first time, min* processing is demonstrated for use in decoding LDPC-coded signals. In addition, max*, min**, or max** (and their respective inverses) may also be employed when performing calculations that are required to perform decoding of signals coded using LDPC code. These new parameters may be employed to provide for much improved decoding processing for LDPC codes when that decoding involves the determination of a minimal and/or maximal value, or a minimal and/or maximal log corrected value, from among a number of possible values. The total number of processing steps employed within the decoding of an LDPC-coded signal is significantly reduced be employing the min*, max*, min**, or max** (and their respective inverses) decoding processing described herein.
摘要:
Symbol by symbol variable constellation type and/or mapping capable communication device. A communication device is operable to perform processing of a variable constellation signal whose constellation varies on a symbol by symbol basis. This may involve performing encoding of input to generate the variable constellation signal; alternatively or in addition to, this may involve performing decoding of a variable constellation signal as well. In doing so, this approach may involve using a single encoder and/or decoder (depending on the application). In some instances, a single device is operable to encode a first variable constellation signal (for transmission to another device) and to decode a second variable constellation signal (that has been received from another device). In addition, a method of coding (including one or both of encoding and decoding) may also operate of a variable constellation signal whose constellation varies on a symbol by symbol basis.
摘要:
Parallel concatenated turbo trellis encoder structure. A dual path turbo trellis coded modulation encoder employs two interleavers and two constituent encoders and is also operable to encode symbols whose code rate may vary on a symbol by symbol basis. In addition, each of the interleavers of the parallel concatenated turbo trellis encoder structure may perform modified interleaving where input bits are treated differently depending on the order in which they are received. This interleaving may be differentiated on a bit level. In some embodiments, the implementation of the parallel concatenated turbo trellis encoder structure ensures that the output order of encoded symbols is the same as the order in which the input is received. This input may itself be in the form of bits and/or symbols. Alternatively, the parallel concatenated turbo trellis encoder structure may also support a scrambled ordering of the encoded output with respect to the input.
摘要:
Efficient LDPC code decoding with new minus operator in a finite precision radix system. A new mathematical operator is introduced and applied to the decoding of LDPC coded signals. This new operator is referred to as the min†− (min-dagger minus) operator herein. This min†− processing is appropriately applied during the updating of the edge messages with respect to the variable nodes. In a bit level decoding approach to decoding LDPC coded signals, the updating of the edge messages with respect to the bit nodes is performed using the new min†− operator. This approach provides very comparable performance to min** processing as also applied to updating of the edge messages with respect to the bit nodes and may also provide for a significant savings in hardware. Also, within finite precision radix systems, the new min†− operator provides a means by which always meaningful results may be achieved during the decoding processing.
摘要:
Variable code rate and signal constellation turbo trellis coded modulation (TTCM) codec. A common trellis is employed at both ends of a communication system (in an encoder and decoder) to code and decode data at different rates. The encoding employs a single TTCM encoder whose output bits may be selectively punctured to support multiple modulations (constellations and mappings) according to a rate control sequence. A single TTCM decoder is operable to decode each of the various rates at which the data is encoded by the TTCM encoder. The rate control sequence may include a number of rate controls arranged in a period that is repeated during encoding and decoding. Either one or both of the encoder and decoder may adaptively select a new rate control sequence based on operating conditions of the communication system, such as a change in signal to noise ratio (SNR).
摘要:
A wireless local area network (WLAN) transmitter includes a baseband processing module and a plurality of radio frequency (RF) transmitters. The processing module selects one of a plurality of modes of operation based on a mode selection signal. The processing module determines a number of transmit streams based on the mode selection signal. The processing of the data further continues by converting encoded data into streams of symbols in accordance with the number of transmit streams and the mode selection signal. A number of the plurality of RF transmitters are enabled based on the mode selection signal to convert a corresponding one of the streams of symbols into a corresponding RF signal such that a corresponding number of RF signals is produced.
摘要:
LDPC (Low Density Parity Check) codes with corresponding parity check matrices selectively constructed with CSI (Cyclic Shifted Identity) and null sub-matrices. An LDPC matrix corresponding to an LDPC code is employed within a communication device to encode and/or decode coded signals for use in any of a number of communication systems. The LDPC matrix is composed of a number of sub-matrices and may be partitioned into a left hand side matrix and a right hand side matrix. The right hand side matrix may include two sub-matrix diagonals therein that are composed entirely of CSI (Cyclic Shifted Identity) sub-matrices; one of these two sub-matrix diagonals is located on the center sub-matrix diagonal and the other is located just to the left thereof. All other sub-matrices of the right hand side matrix may be null sub-matrices (i.e., all elements therein are values of zero “0”).
摘要:
Overlapping sub-matrix based LDPC (Low Density Parity Check) decoder. Novel decoding approach is presented, by which, updated bit edge messages corresponding to a sub-matrix of an LDPC matrix are immediately employed for updating of the check edge messages corresponding to that sub-matrix without requiring storing the bit edge messages; also updated check edge messages corresponding to a sub-matrix of the LDPC matrix are immediately employed for updating of the bit edge messages corresponding to that sub-matrix without requiring storing the check edge messages. Using this approach, twice as many decoding iterations can be performed in a given time period when compared to a system that performs updating of all check edge messages for the entire LDPC matrix, then updating of all bit edge messages for the entire LDPC matrix, and so on. When performing this overlapping approach in conjunction with min-sum processing, significant memory savings can also be achieved.
摘要:
Overlapping sub-matrix based LDPC (Low Density Parity Check) decoder. Novel decoding approach is presented, by which, updated bit edge messages corresponding to a sub-matrix of an LDPC matrix are immediately employed for updating of the check edge messages corresponding to that sub-matrix without requiring storing the bit edge messages; also updated check edge messages corresponding to a sub-matrix of the LDPC matrix are immediately employed for updating of the bit edge messages corresponding to that sub-matrix without requiring storing the check edge messages. Using this approach, twice as many decoding iterations can be performed in a given time period when compared to a system that performs updating of all check edge messages for the entire LDPC matrix, then updating of all bit edge messages for the entire LDPC matrix, and so on. When performing this overlapping approach in conjunction with min-sum processing, significant memory savings can also be achieved.