Abstract:
Computerized techniques for real-time object detection from video data include: defining an analysis profile comprising an initial number of analysis cycles dedicated to each of a plurality of detectors, each detector being independently configured to detect objects according to a unique set of analysis parameters; receiving a plurality of frames of digital video data, the digital video data depicting an object; analyzing the plurality of frames using the plurality of detectors and in accordance with the analysis profile, wherein analyzing the plurality of frames produces an analysis result for each of the plurality of detectors; determining a confidence score for each of the analysis results; and updating the analysis profile by adjusting the number of analysis cycles dedicated to at least one of the plurality of detectors based on the confidence scores. Corresponding systems and computer program products are also disclosed.
Abstract:
Computer program products for performing workflows using a mobile device, without requiring tactile input from the user. The workflow is thus “touchless” and may utilize input preferably including optical data and/or audio data. Tactile input may be optionally provided in some embodiments, but the workflow is configured to be performed without any tactile input. Accordingly, in one embodiment, a computer program product includes a computer readable medium having computer readable and/or executable program instructions embodied therewith, the program instructions being configured to cause a processor to: invoke a mobile application using a mobile device; receive auditory input via the mobile device; and perform a business workflow via the mobile application based on the auditory input. Corresponding systems and computer program product embodiments configured for touchless mobile workflows are also described.
Abstract:
In various embodiments, computer program products for detecting, estimating, calculating, etc. characteristics of a document based on reference objects depicted on the document are disclosed. In one approach, a computer program product for processing a digital image depicting a document includes instructions executable by a computer for analyzing the digital image to determine one or more of a presence and a location of one or more reference objects; determining one or more geometric characteristics of at least one of the reference objects; defining one or more region(s) of interest based at least in part on one or more of the determined geometric characteristics; and detecting a presence or absence of an edge of the document within each defined region of interest. Additional embodiments leverage the type of document depicted in the image, multiple frames of image data, and/or calculate or extrapolate document edges rather than locating edges in the image.
Abstract:
A computer program product includes program instructions configured to cause a processor, to: perform optical character recognition (OCR) on an image of a document; extract an identifier of the document from the image based at least in part on the OCR; compare at least portions of the identifier with content from one or more reference data sources; and determine whether the identifier is valid based at least in part on the comparison. The content comprises global address information; while the content from the reference is derived from geographic information. Deriving the content from the geographic information includes: obtaining the geographic information; and parsing the geographic information according to a set of predefined heuristic rules, where the heuristic rules are configured to normalize the global address information obtained from the one or more sources according to a single convention for representing address information.
Abstract:
Systems, methods, and computer program products for smart, automated capture of textual information using optical sensors of a mobile device, and selective provision of such textual information to a user interface for facilitating performance of downstream workflows are disclosed. The capture and provision is context-aware, and determines context of the optical input, and optionally invokes a contextually-appropriate workflow based thereon. The techniques also provide capability to normalize, correct, and/or validate the captured optical input and provide the corrected, normalized, validated, etc. information to the contextually-appropriate workflow. As a result, the overall process of capturing information from optical input using a mobile device, invoking an appropriate workflow, and providing captured information to the workflow is significantly simplified and improved in terms of accuracy of data transfer/entry, speed and efficiency of workflows, and user experience.
Abstract:
Systems, computer program products, and techniques for detecting objects depicted in digital image data are disclosed, according to various exemplary embodiments. The inventive concepts uniquely utilize internal features to accomplish object detection, thereby avoiding reliance on detecting object edges and/or transitions between the object and other portions of the digital image data, e.g. background textures or other objects. The inventive concepts thus provide an improvement over conventional object detection since objects may be detected even when edges are obscured or not depicted in the digital image data. In one aspect, a computer-implemented method of detecting an object depicted in a digital image includes: detecting a plurality of identifying features of the object, wherein the plurality of identifying features are located internally with respect to the object; and projecting a location of one or more edges of the object based at least in part on the plurality of identifying features.
Abstract:
A method includes: receiving or capturing an image comprising an identity document (ID) using a mobile device; classifying the ID; analyzing the ID based at least in part on the ID classification; determining at least some identifying information from the ID; at least one of building an ID profile and updating the ID profile, based at least in part on the analysis; providing at least one of the ID and the ID classification to a loan application workflow and/or a new financial account workflow; and driving at least a portion of the workflow based at least in part on the ID and the ID classification. Corresponding systems and computer program products are also disclosed.
Abstract:
According to one embodiment, a computer-implemented method is configured for building a classification and/or data extraction knowledge base using an electronic form. The method includes: receiving an electronic form having associated therewith a plurality of metadata labels, each metadata label corresponding to at least one element of interest represented within the electronic form; parsing the plurality of metadata labels to determine characteristic features of the element(s) of interest; building a representation of the electronic form based on the plurality of metadata labels; generating a plurality of permutations of the representation of the electronic form by applying a predetermined set of variations to the representation; and training either a classification model, an extraction model, or both using: the representation of the electronic form, and the plurality of permutations of the representation of the electronic form. Corresponding systems and computer program products are also disclosed.
Abstract:
Systems, methods, and computer program products for capturing and analyzing image data, preferably video data, are disclosed. The inventive concepts include using multiple frames of image data to generate a composite image, where the composite image may be characterized by a higher resolution than one or more of the individual frames used to generate the composite image, and/or absence of a blurred region present in one or more of the individual frames. Inventive techniques also include determining a minimum capture resolution appropriate for capturing images of particular objects for downstream processing, and optionally triggering generation of a composite image having sufficient resolution to facilitate the downstream processing in response to detecting one or more frames of image data are characterized by a resolution, and/or a region having a resolution, less than the minimum capture resolution appropriate for capturing images of those particular objects.
Abstract:
Techniques for improved binarization and extraction of information from digital image data are disclosed in accordance with various embodiments. The inventive concepts include independently binarizing portions of the image data on the basis of individual features, e.g. per connected component, and using multiple different binarization thresholds to obtain the best possible binarization result for each portion of the image data independently binarized. Determining the quality of each binarization result may be based on attempted recognition and/or extraction of information therefrom. Independently binarized portions may be assembled into a contiguous result. In one embodiment, a method includes: identifying a region of interest within a digital image; generating a plurality of binarized images based on the region of interest using different binarization thresholds; and extracting data from some or all of the plurality of binarized images. Corresponding systems and computer program products are also disclosed.