Abstract:
Disclosed in the present application is a method by which a terminal receives a signal, to which hybrid beamforming is applied, from a base station in a wireless communication system. More specifically, the method comprises the steps of: acquiring information on a first precoder for first beamforming of the hybrid beamforming; generating information on a precompensation precoder for the first beamforming by using the information on the first precoder; reporting the information on the precompensation precoder to the base station; and receiving, from the base station, a signal to which the precompensation precoder, the first beamforming, and second beamforming are applied, wherein the precompensation precoder adjusts, to zero degrees, a boresight direction of a signal to which the first precoder for the first beamforming is applied, and a second precoder for the second beamforming is configured to enable the signal to be transmitted in a final boresight direction on the basis of a boresight direction of zero degrees.
Abstract:
Disclosed is a synchronization signal receiving method comprising a step of respectively receiving, from a plurality of base stations, a plurality of synchronization signals generated by using a predetermined repetition frequency, sequence, and phase pattern vector, measuring a start timing of a frame, a sequence index, and an index of the phase pattern vector by using the plurality of synchronization signals with respect to each of the plurality of base stations, selecting the base station having the highest correlation value calculated as a result of the measurement among the plurality of base stations, and establishing a connection with the selected base station, wherein the phase pattern vector repeatedly changes the phase of the sequence at the repetition frequency.
Abstract:
The present invention relates to a method for efficiently supporting communication for vehicles in a next-generation wireless communication system and a device for the same. To this end, a user equipment (UE) receives signals from a single antenna of a network through a plurality of antenna units which are located in dispersed locations of the UE, determines whether or not a mobility-related event of the UE has occurred by means of the signals received through the plurality of antenna units, and, if a mobility-related event of the UE has occurred, transmits an event occurrence report to the network, wherein the occurrence of the mobility-related event of the UE is determined in accordance with the Rx power of the signals and the radio wave distribution between the network and the UE and, more particularly, the angle of arrival (AoA) of the signals received through the plurality of antenna units.
Abstract:
The present specification pertains to a method by which a terminal feeds back CSI information in a wireless communication system to which 3D beamforming is applied, the method comprising the steps of: receiving a pilot signal from a base station; setting either a first CSI transmission mode or a second CSI transmission mode; and feeding back CSI information on the basis of the set CSI transmission mode. Here, a period and offset of the CSI information to be fed back can be preset regardless of the CSI transmission mode.
Abstract:
Provided is a method for detecting whether a random access channel (RACH) preamble collision occurs in a wireless communication system. An evolved Node B (eNB) receives, from a first user equipment (UE), a first RACH preamble generated by using a combination of a plurality of sequences, and also receives, from a second UE, a second RACH preamble generated by using one sequence. The eNB detects whether a collision occurs between the first RACH preamble and the second RACH preamble on the basis of the received patterns of the first RACH preamble and the second RACH preamble, wherein the received patterns of the first RACH preamble and the second RACH preamble are based on channel delay caused by multiple paths.
Abstract:
The present application provides a method for feeding back, by a terminal, CSI information in a wireless communication system to which 3D beamforming is applied. Here, the method comprises the steps of: receiving a pilot signal from a base station; and feeding back first CSI information for a horizontal direction domain and second CSI information for a vertical direction domain on the basis of the 3D beamforming. Here, when a precoding indicator is a first value, first wideband (WB) CSI information and second wideband (WB) CSI information may be fed back, and when the precoding indicator is a second value, first subband (SB) CSI information and second subband (SB) CSI information may be fed back.
Abstract:
Disclosed is a reference signal generation method in which generated are reference signal sequences applied, if the number of antenna ports used in data transmission is 9 or more, the reference signal sequences are mapped to resource regions allocated to the plurality of antenna ports, respectively, and a subframe to which the reference signal sequences are mapped is transmitted to a terminal. In the reference signal generation method, a resource region to which mapped is a reference signal sequence with respect to the ninth antenna port among the plurality of antenna ports is identical to a resource region to which mapped is a reference signal sequence with respect to the tenth antenna port, and the reference signal sequence with respect to the ninth antenna port and the reference signal sequence with respect to the tenth antenna port are multiplexed by means of CDM.
Abstract:
Disclosed in the present application is a method for a transmitting end transmitting a signal to a receiving end in a wireless communication system. Specifically, the method comprises the steps of: receiving, from the receiving end, information on a first precoder and a second precoder which are for a channel between the transmitting end and the receiving end; and transmitting a signal to the receiving end on the basis of the first precoder, wherein, if the receiving performance of the receiving end based on the first precoder is greater than or equal to a critical value, the signal is transmitted to the receiving end on the basis of the second precoder.
Abstract:
Disclosed are: a MIMO transmitter communication method estimating a channel correlation for REs on the basis of information regarding channels of REs contained in a resource region allocable to a MIMO receiver, allocating a part of the resource region as a resource for the MIMO receiver in consideration of the estimated channel correlation, and transmitting a downlink signal to the MIMO receiver through the allocated resource; and a MIMO transmitter.
Abstract:
A method of generating a transmission signal and a MIMO transmitter are disclosed. The method includes the steps of selecting a reference RE from an RE group including a plurality of resource elements (REs), generating a common precoder and a preprocessing filter to be shared by the plurality of the REs belonging to the RE group based on channel information of the reference RE, generating first signals corresponding to a precoding signal for each of the plurality of the REs in a manner of applying the common precoder to transmission data of each of the plurality of the REs and generating second signals in a manner of compensating first signals of REs except the reference RE among the plurality of the REs using channel information of each of plurality of the REs and the preprocessing filter.