Abstract:
A non-volatile current-switching magnetic memory element includes a bottom electrode, a pinning layer formed on top of the bottom electrode, and a fixed layer formed on top of the pinning layer. The non-volatile current-switching magnetic memory element further includes a tunnel layer formed on top of the pinning layer, a first free layer with a perpendicular anisotropy that is formed on top of the tunnel layer, a granular film layer formed on top of the free layer, a second free layer formed on top of the granular film layer, a cap layer formed on top of the second layer, and a top electrode formed on top of the cap layer.
Abstract:
A multi-state current-switching magnetic memory element has a magnetic tunneling junction (MTJ), for storing more than one bit of information. The MTJ includes a fixed layer, a barrier layer, and a non-uniform free layer. In one embodiment, having 2 bits per cell, when one of four different levels of current is applied to the memory element, the applied current causes the non-uniform free layer of the MTJ to switch to one of four different magnetic states. The broad switching current distribution of the MTJ is a result of the broad grain size distribution of the non-uniform free layer.
Abstract:
A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
Abstract:
A non-volatile current-switching magnetic memory element includes a bottom electrode, a pinning layer formed on top of the bottom electrode, and a fixed layer formed on top of the pinning layer. The memory element further includes a tunnel layer formed on top of the pinning layer, a first free layer formed on top of the tunnel layer, a granular film layer formed on top of the free layer, a second free layer formed on top of the granular film layer, a cap layer formed on top of the second layer and a top electrode formed on top of the cap layer.
Abstract:
A method of manufacturing a magnetic memory element includes the steps of forming a permanent magnetic layer on top a bottom electrode, forming a pinning layer on top the permanent magnetic layer, forming a magnetic tunnel junction (MTJ) including a barrier layer on top of the pinning layer, forming a top electrode on top of the MTJ, forming a hard mask on top of the top electrode, and using the hard mask to perform a series of etching processes to reduce the width of the MTJ and the top electrode to substantially a desired width, where one of these etching processes is stopped when a predetermined material in the pinning layer is detected thereby avoiding deposition of metal onto the barrier layer of the etching process thereby preventing shorting.
Abstract:
A non-volatile current-switching magnetic memory element includes a bottom electrode, a pinning layer formed on top of the bottom electrode, and a fixed layer formed on top of the pinning layer. The memory element further includes a tunnel layer formed on top of the pinning layer, a first free layer formed on top of the tunnel layer, a granular film layer formed on top of the free layer, a second free layer formed on top of the granular film layer, a cap layer formed on top of the second layer and a top electrode formed on top of the cap layer.
Abstract:
A non-volatile magnetic memory element includes a number of layers one of which is a free layer which is graded. The graded free layer may include various elements with each element having a different anisotropy or it may include nonmagnetic compounds and magnetic regions with the non-magnetic compounds forming graded contents forming a unique shape such as cone shaped, diamond shaped or other shapes and whose thickness is based on the reactivity of the magnetic compound.
Abstract:
A multi-state low-current-switching magnetic memory element (magnetic memory element) comprising a free layer, two stacks, and a magnetic tunneling junction is disclosed. The stacks and magnetic tunneling junction are disposed upon surfaces of the free layer, with the magnetic tunneling junction located between the stacks. The stacks pin magnetic domains within the free layer, creating a free layer domain wall. A current passed from stack to stack pushes the domain wall, repositioning the domain wall within the free layer. The position of the domain wall relative to the magnetic tunnel junction corresponds to a unique resistance value, and passing current from a stack to the magnetic tunnel junction reads the magnetic memory element's resistance. Thus, unique memory states may be achieved by moving the domain wall.
Abstract:
One embodiment of the present invention includes a an embodiment of the present invention includes a non-volatile current-switching magnetic memory element including a bottom electrode; a pinning layer formed on top of the bottom electrode; a fixed layer formed on top of the pinning layer; a tunnel layer formed on top of the pinning layer; a first free layer formed on top of the tunnel layer; a granular film layer formed on top of the free layer; a second free layer formed on top of the granular film layer; a cap layer formed on top of the second layer; and a top electrode formed on top of the cap layer.
Abstract:
A multi-state current-switching magnetic memory element includes a stack of magnetic tunneling junction (MTJ) separated by a non-magnetic layer for storing more than one bit of information, wherein different levels of current applied to the memory element cause switching to different states.