摘要:
Various embodiments of the present invention are directed to photonic interconnects that can be used for on-chip as well as off-chip communications between computer system components. In one embodiment of the present invention, a photonic interconnect comprises a plurality of on-chip waveguides. Additionally, the photonic interconnect may include a plurality of off-chip waveguides, and at least one optoelectronic converter. The at least one optoelectronic converter can be photonically coupled to a portion of the plurality of on-chip waveguides, can be photonically coupled to a portion of the plurality of off-chip waveguides, and is in electronic communication with at least one computer system component.
摘要:
A micro-ring configured to selectively detect or modulate optical energy includes at least one annular optical cavity; at least two electrodes disposed about the optical cavity configured to generate an electrical field in the at least one optical cavity; and an optically active layer optically coupled to the at least one optical cavity. A method of manipulating optical energy within a waveguide includes optically coupling at least one annular optical cavity with the waveguide; and selectively controlling an electrical field in the at least one annular optical cavity to modulate optical energy from the waveguide.
摘要:
Various embodiments of the present invention are directed to compact systems for generating polarization-entangled photons. In one embodiment of the present invention, a non-degenerate, polarization-entangled photon source comprises a half-wave plate that outputs both a first pump beam and a second pump beam, and a first beam displacer that directs the first pump beam into a first transmission channel and the second pump beam into a second transmission channel. A down-conversion device converts the first pump beam into first signal and idler photons and converts the second pump beam into second signal and idler photons. A second beam displacer directs both the first signal and idler photons and the second signal and idler photons into a single transmission channel. A dichroic mirror directs the first and second signal photons to a first fiber optic coupler and the first and second idler photons to a second fiber optic coupler.
摘要:
A nanoparticle is able to emit single photons. A waveguide is coupled to the nanoparticle and able to receive the single photons. A backreflector is optically coupled to the waveguide and configured to reflect the single photons toward the waveguide.
摘要:
Various embodiments of the present invention are directed to quantum-dot-based quantum computer architectures that are scalable and defect tolerant and to methods for fabricating quantum dots in quantum computer architectures. In one embodiment of the present invention, a node of quantum computer architecture comprises a first photonic device supported by a substrate. The quantum computer architecture also includes a number of quantum dots coupled to the first photonic device, and a switch supported by the substrate that controls transmission of electromagnetic waves between a bus waveguide and the quantum dots.
摘要:
Various embodiments of the present invention are directed to photonic interconnects that can be used for on-chip as well as off-chip communications between computer system components. In one embodiment of the present invention, a photonic interconnect comprises a plurality of on-chip waveguides. Additionally, the photonic interconnect may include a plurality of off-chip waveguides, and at least one optoelectronic converter. The at least one optoelectronic converter can be photonically coupled to a portion of the plurality of on-chip waveguides, can be photonically coupled to a portion of the plurality of off-chip waveguides, and is in electronic communication with at least one computer system component.
摘要:
A micro-ring configured to selectively detect or modulate optical energy includes at least one annular optical cavity; at least two electrodes disposed about the optical cavity configured to generate an electrical field in the at least one optical cavity; and an optically active layer optically coupled to the at least one optical cavity. A method of manipulating optical energy within a waveguide includes optically coupling at least one annular optical cavity with the waveguide; and selectively controlling an electrical field in the at least one annular optical cavity to modulate optical energy from the waveguide.
摘要:
One example relates to an optical engine comprising a given layer of given material overlaying an optical waveguide of another material. The given layer of given material can comprise an aligning seat to receive an optical transmitter to provide the optical signal. The aligning seat can also align the optical transmitter such that the optical transmitter provides the optical signal in a direction that is substantially non-oblique relative to a longitudinal axis of the optical waveguide. The optical engine can also include an optical signal redirector to tilt the optical signal by a tilt angle. The optical waveguide can comprise a grating coupler to diffract the optical signal provided at the tilt angle into the optical waveguide.
摘要:
A device includes a first region, a multiplication region, a second region, and an absorption region. The first region is associated with a first terminal, and the second region is associated with a second terminal. The first region is separated from the second region by the multiplication region. The absorption region is disposed on the multiplication region and associated with a third terminal. A multiplication region electric field is independently controllable with respect to an absorption region electric field, based on the first terminal, the second terminal, and the third terminal.
摘要:
A sub-wavelength grating device having controlled phase response includes a grating layer having line widths, line thicknesses, line periods, and line spacings selected to produce a first level of control in phase changes of different portions of a beam of light reflected from the grating layer. The device also includes a substrate affixed to the grating layer that produces a second level of control in phase changes of different portions of a beam of light reflected from the grating layer, the second level of control being accomplished abrupt stepping of the substrate in a horizontal dimension, ramping the substrate in a horizontal dimension, or changing the index of refraction in a horizontal dimension.