Abstract:
The invention relates to identifying and evaluating target coding sequences for control of plant parasitic nematodes by inhibiting one or more biological functions, and their use. The invention provides methods and compositions for identification of such sequences and for the control of a plant-parasitic nematode population. By feeding one or more recombinant double stranded RNA molecules provided by the invention to the nematode, a reduction in disease may be obtained through suppression of nematode gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and the plant cells and plants obtained thereby.
Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Abstract:
The invention relates to identifying and evaluating target coding sequences for control of plant parasitic nematodes by inhibiting one or more biological functions, and their use. The invention provides methods and compositions for identification of such sequences and for the control of a plant-parasitic nematode population. By feeding one or more recombinant double stranded RNA molecules provided by the invention to the nematode, a reduction in disease may be obtained through suppression of nematode gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and the plant cells and plants obtained thereby.
Abstract:
The present invention provides DNA molecules and constructs, and their nucleotide sequences, useful for modulating gene expression in plants. Transgenic plants, plant cells, plant parts, and seeds comprising the DNA molecules operably linked to heterologous transcribable polynucleotides are also provided, as are methods of their use.
Abstract:
This disclosure provides purified nucleic acids and polypeptides. Also provided are transgenic plants, seeds, and plant cells containing DNA for expression of the proteins that are useful for imparting enhanced agronomic trait(s) to transgenic crop plants, methods of making such plants and methods of making agricultural commodity including seeds and hybrid seeds from such plants.
Abstract:
The present invention provides non-coding regulatory element polynucleotide molecules isolated from the lipid transfer protein (LTP) gene of Oryza sativa and useful for expressing transgenes in plants. The invention further discloses compositions, polynucleotide constructs, transformed host cells, transgenic plants and seeds containing the Oryza sativa regulatory polynucleotide sequences, and methods for preparing and using the same.
Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.