Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Abstract:
Plant nitrogen use efficiency in corn has been improved by transformation with a flavohemoglobin gene. Plants comprising a flavohemoglobin gene have decreased nitric oxide (NO) levels, increased biomass accumulation under a sufficient nitrogen growth condition, and increased chlorophyll content under a limiting nitrogen growth condition. Additionally, these transformed plants evidence higher levels of yield.
Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Abstract:
The invention relates to identifying and evaluating target coding sequences for control of plant parasitic nematodes by inhibiting one or more biological functions, and their use. The invention provides methods and compositions for identification of such sequences and for the control of a plant-parasitic nematode population. By feeding one or more recombinant double stranded RNA molecules provided by the invention to the nematode, a reduction in disease may be obtained through suppression of nematode gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and the plant cells and plants obtained thereby.
Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Abstract:
The present invention is directed to controlling pest infestation by inhibiting one or more biological functions in an invertebrate pest. The invention discloses methods and compositions for use in controlling pest infestation by feeding one or more different recombinant double stranded RNA molecules to the pest in order to achieve a reduction in pest infestation through suppression of gene expression. The invention is also directed to methods for making transgenic plants that express the double stranded RNA molecules, and to particular combinations of transgenic pesticidal agents for use in protecting plants from pest infestation.
Abstract:
The present invention provides methods for controlling invertebrate pest infestations, for instance in plants, and related compositions and polynucleotides useful in such methods. More specifically, the present invention provides polynucleotides and methods of use thereof for modifying the expression of genes in an invertebrate pest, for instance through RNA interference.