摘要:
Techniques are disclosed for determining a specific velocity of a device attached to a wireless network. The specific velocity can be determined using a handover count of the base station boundary transitions over a time window and/or using a set of sojourn time samples that each denote the duration the device remains in the zone of a particular base station. Techniques operate effectively in cellular networks having high base station densities. The specific velocity estimates may be inputs to components on the device or network to adjust a local device function or performance behavior.
摘要:
In one embodiment, a method of mitigating uplink inter-carrier interference (ICI) from macrocell mobile stations at a dedicated channel femtocell base station is provided that includes: determining a timing offset for a femtocell uplink symbol timing that reduces the ICI based upon an expected spatial distribution for the macrocell mobile stations with respect to the femtocell base station; communicating the timing offset to at least one femtocell mobile station; and at the femtocell base station, receiving an uplink symbol transmission from the at least one femtocell mobile station according to the timing offset.
摘要:
A method for minimizing interference is applicable to a primary network whether or not spectrum resources are assigned to its users using a block-wise subcarrier assignment scheme or a randomized allocation scheme. The identified unused spectrum resources that are to be assigned to the users of the opportunistic network exclude un-used subcarriers adjacent to subcarriers used by the users of the primary network to avoid interference. The opportunistic network may assign the identified unused spectrum resources using a scheme that selects a block size for an adaptive modulation and coding scheme or for avoidance of waste of spectrum resources.
摘要:
A femtocell increases efficiency and coverage of a macrocellular network operating in a co-channel manner within the macrocell spectrum by selecting subcarriers for its mobile station using both the subcarrier allocation map received from the macrocell and a spectrum sensing operation. Interference is avoided by selecting only subcarriers not allocated by the macrocell and subcarriers allocated to users not nearby to the femtocell. Interference is eliminated from the received signals using co-channel interference avoidance techniques. Selection of subcarriers for femtocell use may take into consideration inter-carrier interference detected.
摘要:
A femtocell network uses idle resource blocks of a data frame to reduce interference by spreading the resource blocks of the users over the available spectrum. Spreading may be achieved by repeating the transmission using a number of the resource block groups. As a result, (a) more robustness is obtained against interference; (b) transmission power levels may be decreased because of the spreading, resulting in reducing interference between nearby femtocells and between a macrocell and a femtocell. Other methods of spreading such a frequency or time slot hopping may also be used.
摘要:
A femtocell network uses idle resource blocks of a data frame to reduce interference by spreading the resource blocks of the users over the available spectrum. Spreading may be achieved by repeating the transmission using a number of the resource block groups. As a result, (a) more robustness is obtained against interference; (b) transmission power levels may be decreased because of the spreading, resulting in reducing interference between nearby femtocells and between a macrocell and a femtocell. Other methods of spreading such a frequency or time slot hopping may also be used.
摘要:
A method for an opportunistic network within a coverage area of a primary network includes (a) spectrum-sensing signals from users in the primary network to identify unused spectrum resources in a spectrum shared between the opportunistic network and the primary network; and (b) based on the spectrum resources identified, assigning the identified spectrum resources to be used among the users of the opportunistic network in one or more block sizes determined from expected interference from the users of the primary network. The method is applicable to a primary network whether or not spectrum resources are assigned to its users using a block-wise subcarrier assignment scheme or a randomized allocation scheme. The identified unused spectrum resources that are to be assigned to the users of the opportunistic network exclude un-used subcarriers adjacent to subcarriers used by the users of the primary network to avoid interference. The opportunistic network may assign the identified unused spectrum resources using a scheme that selects a block size for an adaptive modulation and coding scheme or for avoidance of waste of spectrum resources.
摘要:
A time-of-arrival (TOA) estimation method for multi-band orthogonal frequency division multiplexing (MB-OFDM) signals uses a simple equally-spaced channel model to recover the impulse response of the wireless channel, and locates the delay of the first channel path by minimizing the energy leakage from the first channel path. The TOA is estimated based on the delay. Such a method does not require channel information for TOA estimation at the receiver and does not require modification of the receiver structure. The method also avoids a sub-optimal solution known to occur in maximum likelihood (ML) estimation.
摘要:
A method is provided for MIMO uplink communications between a base station and a wireless station with more than two antennae. The method includes: (a) negotiating between the base station and the wireless station uplink MIMO/cooperative MIMO capabilities, using a message exchange protocol in which a message exchanged comprises a field for specifying uplink MIMO/cooperative MIMO capabilities; (b) the base station receiving a request from the wireless station for data transmission; (c) the base station sending the wireless station an allocated resource and an uplink MIMO/cooperative MIMO method for uplink transmission; (e) the wireless station mapping data symbols to the allocated resource with proper pilot pattern; and (f) the base station detecting the data symbols from the channel.