Abstract:
A method for optimizing throughput in a wireless communication system is disclosed. A target metric is estimated based on previous acknowledgment data. A channel quality indicator offset is determined based on the target metric. A channel quality indicator is adjusted based on the channel quality indicator offset. The channel quality indicator indicates the quality of a wireless transmission channel.
Abstract:
Techniques are provided to control the transmit power for data transmission on multiple transport channels having different signal quality (SIR) targets. A single SIR target is maintained for all transport channels, and this SIR target is adjusted based only on active transport channels. For each update interval, a data processor processes at least one data block received in the current update interval on at least one of the transport channels and provides the status of each received data block. A controller increases the SIR target based on an up step if any received data block is erased and decreases the SIR target based on a down step if all received data blocks are good. If any received data block is erased, the down step used to adjust the SIR target may be set to the smallest down step size required by all transport channels with erased data blocks.
Abstract:
Devices and methods are provided for deploying and/or implementing a low power mode in an access point (AP) base station. The low power mode may be implemented based on the presence and/or status of access terminals (ATs). In one embodiment, the method may involve determining whether any ATs are present within at least one defined coverage area. In another embodiment, the method may involve determining whether the ATs are in an idle or active state.
Abstract:
Techniques to acquire and track a received signal instance (or multipath) based on one or more transmitted pilots. In an aspect, a frequency tracking loop is provided to acquire and track the multipath, and supports a number of loop modes (e.g., acquisition and tracking modes). Each loop mode may be associated with a respective frequency detector and a set of values for a set of elements in the loop. In another aspect, several frequency detectors are provided for deriving estimates of the frequency error in the downconversion of the multipath (e.g., from radio frequency to baseband). In one design, maximum likelihood estimates of the frequency error are derived based on the recovered pilot symbols. In another design, the frequency error estimates for the multipath are derived based on the frequency error estimated for each transmitted signal.
Abstract:
Techniques to filter pilot symbols for a pilot in an “adaptive” manner to provide an improved estimate of the response of a communication channel. A received signal may experience different channel conditions at different times, and different multipaths may also experience different channel conditions even when received close in time. A pilot filter with an adaptive response is used to provide an improved estimate of the channel response. Various adaptive pilot filtering schemes may be used. In a first scheme, the channel conditions are estimated based on the quality of the received pilot. In a second scheme, the channel conditions are estimated based on the quality of the pilot estimates (i.e., the filtered pilot symbols). For each scheme, a particular filter response is selected based on the estimated quality of either the received pilot or the pilot estimates.
Abstract:
Techniques for filtering noisy estimates to reduce estimation errors are described. A sequence of input values (e.g., for an initial channel impulse response estimate (CIRE)) is filtered with an infinite impulse response (IIR) filter having at least one coefficient to obtain a sequence of output values (e.g., for a filtered CIRE). The coefficient(s) are updated based on the sequence of input values with an adaptive filter, a bank of prediction filters, or a normalized variation technique. To update the coefficient(s) with the adaptive filter, a sequence of predicted values is derived based on the sequence of input values. Prediction errors between the sequence of predicted values and the sequence of input values are determined and filtered to obtain filtered prediction errors. The coefficient(s) of the IIR filter are then updated based on the prediction errors and the filtered prediction errors.
Abstract:
Techniques for power control that avoids outer loop wind-up are disclosed. In one aspect, wind-up of a target power level is detected, and the target power level is modified in response. In another aspect, unwinding of the target power level is detected, after which the target power level is determined without considering wind-up. Various other aspects are also presented, including wind-up and unwinding detection procedures, and target power level modification procedures. These aspects have the benefit of reducing the time that transmit power exceeds that which is necessary, thus increasing system capacity and performance, and mitigating misallocation of system resources.
Abstract:
Techniques for power control that avoids outer loop wind-up are disclosed. In one aspect, wind-up of a target power level is detected, and the target power level is modified in response. In another aspect, unwinding of the target power level is detected, after which the target power level is determined without considering wind-up. Various other aspects are also presented, including wind-up and unwinding detection procedures, and target power level modification procedures. These aspects have the benefit of reducing the time that transmit power exceeds that which is necessary, thus increasing system capacity and performance, and mitigating misallocation of system resources.
Abstract:
Techniques for time tracking diversity pilots are disclosed. In one aspect, an early and a late energy calculation is made on each incoming symbol using a first pilot sequence for despreading. The difference between the two energies is used to drive a tracking loop, which generates a time reference for producing a first pilot estimate and a second pilot estimate, the two estimates used for demodulating data. In another aspect, the early and late energies are made including a plurality of incoming symbols, the number of which corresponds to the number of symbols in a run of positive or negative values in an orthogonalizing sequence. The orthogonalizing sequence is used to generate a second pilot sequence from a first pilot sequence, the resulting second pilot sequence being orthogonal to the first. These aspects have the benefit of simplifying the hardware or processing steps required for transmit diversity time tracking, resulting in cost savings, power savings, simplicity of design, and the like.
Abstract:
Erasure detection and power control are performed for an intermittently active transport channel with unknown format. A receiver processes each received block and determines whether it passes or fails CRC. For each received block with CRC failure, the receiver performs erasure detection by computing a symbol error rate (SER) and energy of the received block, comparing the computed SER against an SER threshold, comparing the computed energy against an energy threshold, and declaring an erasure if the computed SER is less than the SER threshold and the computed energy exceeds the energy threshold. The SER and energy thresholds may be adjusted based on the average SER and the average energy for prior received blocks with CRC failures. For power control, an SIR target is increased by an UP step whenever an erased block is detected for the transport channel.