Abstract:
A computing device is provided with a drive slot with a connector for engaging a corresponding connector of a HDD, and a first locking element. The computing device includes a removable a HDD carrier for insertion into the drive slot having a bracket, a handle and an enclosure slidably attached to the bracket for securing the HDD. The handle includes a second locking element extending therefrom and configured to receive the first locking element to restrict the removable HDD carrier to vertical motion. The first locking element engages with the second locking element when the handle is in the loading position and the bracket moves relative to the enclosure to secure the hard disk drive in the bracket and connect the connector of a hard disk drive to the connector located at the drive slot when the handle transitions from the loading position to the locked position.
Abstract:
An anti-acoustics streamline apparatus is provided. The apparatus includes an air impedance wall having a front face, a rear face, and a plurality of openings extending from the front face to the rear face defining open areas; and a plurality of flow separating structures disposed adjacent to the front face, each of the plurality of flow separating structure extending vertically along the front face of the wall. The openings are configured to define first wall regions in the air impedance wall adjacent to each of the plurality of flow separating structures and second wall regions between the first wall regions. A first ratio of the open areas in the first wall regions to a total area in first wall regions is less than a second ratio of the open areas in the second wall regions to a total area in the second wall regions.
Abstract:
A hot swappable fan module includes an outer frame, a cooling fan, a fixing element, and a light guide assembly. The cooling fan is located on one side of the outer frame. The fixing element is operable to fix the outer frame and the cooling fan. The light guide assembly includes a light guide post, a first stopping portion, and a second stopping portion. The light guide post penetrates through the cooling fan and the outer frame. The first stopping portion is located on the light guide post, and abuts against one surface of the cooling fan opposite to the outer frame. The second stopping portion is arranged opposite to the first stopping portion, is light-transmittable, and is optically coupled to the light guide post, and abuts against one surface of the outer frame opposite to the cooling fan.
Abstract:
A modularized server comprises a rack, a switching mechanism, and a removable electronic device. The rack comprises a first slot and a second slot. The switching mechanism is disposed on the rack. When the removable electronic device is inserted into the first slot, the removable electronic device is operable to drive the switching mechanism to a switching position. The switching mechanism at the switching position can stop another removable electronic device different from a specific design of the removable electronic device from being inserted into the second slot.
Abstract:
A hard drive tray device applied in a server is provided. The server includes a housing. The hard drive tray device includes a rail member and a tray. The rail member is disposed at the inner wall of the housing. The tray is slidably engaged with the rail member so as to slide between an expanded position and a closed position relative to the housing. The tray includes a base for carrying two storage devices. The base has a hollow portion. The storage devices are respectively located at two sides of the hollow portion. When the tray slides to the expanded position, one of the storage devices and at least a part of the hollow portion are located outside the housing.
Abstract:
A component carrier with a tray, a slide cage, a level, and a tilting mechanism. The tray has a bottom surface with a groove formed therein. The slide cage is actuatably coupled with the tray and has a receiving space and an undercarriage. The lever is pivotally coupled with the slide cage and has a lower portion for engaging the groove to transition the slide cage between a first position and a second position. The tilting mechanism is coupled with the tray and configured for biasing the slide cage to the second position. In the first position the undercarriage of the slide cage is positioned proximal to the bottom surface of the tray. In the second position a first end portion of the undercarriage of the slide cage is displaced away from the bottom surface and a second end portion is positioned proximal to the bottom surface of the tray.
Abstract:
Systems, methods and computer-readable media for reducing upstream preheat for high-density hard disk drive storage. A system can include first and second rows of storage devices installed in a storage rack, the first and second rows having a first distance between consecutive storage devices. The second row can be located behind the first row and farther away from a source of an airflow than the first row. The system can monitor a temperature associated with the second row and when the temperature rises above a threshold, the system can remove a storage device from the first row. The system can then adjust placement within the first row such that the remaining devices have a second, larger distance between each other to increase airflow to storage devices in the second row and reduce system impedance.
Abstract:
Disclosed are a system, method, and computer-readable medium for optimizing a fan control system inside a rack system. In at least one example embodiment, the system can include a rack server with a plurality of chassis each having at least one node, each of the nodes including at least one adjustable air vent and configured for adjusting the at least one adjustable air vent based on an air flow requirement of the node. The system can further include a plurality of fans, where the plurality of fans are configured to operate based on a control signal. The system also can comprise a fan control logic board, wherein the fan control logic board is configured to receive from each node in the plurality of chassis the air flow requirements and based on the plurality of air flow requirements generate and transmit the control signal to the plurality of fans.
Abstract:
An apparatus for reverse mounting an electronic device in a server housing is provided. The apparatus includes a first bracket, a second bracket, and a coupling. The first bracket couples to the device body and extends outward from the device body toward a front rail of the server housing. The first bracket includes a first end configured to releasably couple to front rail of the server housing. The second bracket includes a protrusion that extends outward from the device body in an opposite direction relative to the first bracket. The coupling includes a first portion that couples to a rear rail of the server housing and a second portion defining a channel that receives the protrusion of the second bracket.
Abstract:
A server rack can include a plurality of server chassis. The server chassis can form a opening configured to receive a removable fan through the opening. The removable fan can including a plurality of shutters, the plurality of shutters can be automatically transitionable between an open configuration and a closed configuration. In the open configuration the fan can draw in or push out air to cool the components located within the server chassis. In the closed configuration the shutters can prevent air from entering or exiting the server chassis. A flap can be coupled to the server chassis and automatically transitionable between an open configuration and a closed configuration. In the open configuration the fan is inserted into the server chassis and the flaps are opened into the server chassis. In the closed configuration the fan is removed from the server chassis and the flaps can prevent air from entering or exiting the server chassis.