摘要:
Thermal barrier coating systems for use with hot section components of a gas turbine engine include an inner layer overlying a bond coated substrate and a top layer overlying at least a portion of the inner layer. The inner layer includes a thermal barrier material such as yttria-stabilized zirconia. The top layer includes a rare earth aluminate. The thicknesses and microstructures of the layers may be varied depending on the type of component to be coated. Articles incorporating the thermal barrier coating system exhibit improved resistance to CMAS infiltration.
摘要:
A process and apparatus for depositing a ceramic coating, such as a thermal barrier coating (TBC) for a gas turbine engine component. The process deposits a coating whose composition includes multiple oxide compounds and a carbon-based constituent, e.g., elemental carbon, carbides, and carbon-based gases. The process uses at least one evaporation source to provide multiple different oxide compounds and at least one carbide compound comprising carbon and an element. The evaporation source is evaporated to produce a vapor cloud that contacts and condenses on the component surface to form the ceramic coating, and particularly so that the coating comprises the oxide compounds, an oxide of the element of the carbide compound, and the carbide compound and/or a carbon-containing gas. The process is carried out with an apparatus comprising a coating chamber in which the evaporation source is present, and a device for evaporating the evaporation source.
摘要:
Methods for providing improved resistance to CMAS infiltration for hot section components of a gas turbine engine. Exemplary methods include coating a substrate with a thermal barrier coating system by overlying a bond coated substrate with an inner thermal barrier layer comprised of a thermal barrier material such as yttria-stabilized zirconia. A top layer, including a rare-earth aluminate, is deposited so as to overlie at least a portion of the inner layer. Deposition processes and coating thicknesses may be tailored to the type of component to be coated.
摘要:
A ceramic material suitable for use as a coating, such as a porous thermal barrier coating (TBC) on a component intended for use in a hostile thermal environments. The coating material consists essentially of zirconia stabilized by at least one rare-earth metal oxide and further alloyed to contain a limited amount of titania. Rare-earth metal oxides of particular interest are lanthana, ceria, neodymia, europia, gadolinia, erbia, dysprosia, and ytterbia, individually or in combination. Zirconia, the rare-earth metal oxide, and titania are present in the coating material in amounts to yield a predominantly tetragonal phase crystal structure. The amount of titania in the coating is tailored to allow higher levels of stabilizer while maintaining the tetragonal phase, i.e., avoiding the cubic (fluorite) phase.
摘要:
In accordance with an embodiment of the invention, an article is provided. The article comprises a substrate comprised of silicon containing material, an environmental barrier coating (EBC) overlying the substrate and a thermal barrier coating (TBC) on the environmental barrier coating. The thermal barrier coating comprising a compound having a rhombohedral phase.
摘要:
According to an embodiment of the invention, a repaired component is disclosed. The repaired component comprises an engine run component having a base metal substrate, a portion of the base metal substrate between about 1-3 mils in thickness and an overlying bond coat having been removed to create a remaining base metal substrate of reduced thickness. The repaired component further comprises a lower growth environmental bond coating comprising an alloy having an aluminum content of about 10-60 atomic percent applied to the remaining base metal substrate so that upon subsequent repair of the component, less than about 1-3 mils in thickness of the remaining base metal substrate is removed because of less environmental coating growth into the substrate than the prior bond coat. Advantageously, the repaired component has extended component life and increased repairability.
摘要:
A TBC system suitable for protecting the surface of a substrate subjected to a hostile thermal environment. The TBC system comprises a bond coat on the substrate surface, an alumina scale on the bond coat, and a multilayer TBC comprising a thermal-sprayed first ceramic layer on the alumina scale and a thermal-sprayed second ceramic layer overlying the first ceramic layer. The first ceramic layer consists essentially of partially stabilized zirconia so as to comprise the tetragonal and cubic phases of zirconia. The second ceramic layer consists essentially of fully stabilized zirconia so as to consist essentially of the cubic phase of zirconia. The second ceramic layer is also characterized by having vertical microcracks that extend through the thickness thereof. The second ceramic layer is thicker and more erosion resistant than the first ceramic layer.
摘要:
A coating system and coating method for damping vibration in an airfoil of a rotating component of a turbomachine. The coating system includes a metallic coating on a surface of the airfoil, and a ceramic coating overlying the metallic coating. The metallic coating contains metallic particles dispersed in a matrix having a metallic and/or intermetallic composition. The metallic particles are more ductile than the matrix, and have a composition containing silver and optionally tin. The method involves ion plasma cleaning the surface of the airfoil before depositing the metallic coating and then the ceramic coating.
摘要:
An intermetallic composition suitable for use as an environmentally-protective coating on surfaces of components used in hostile thermal environments, including the turbine, combustor and augmentor sections of a gas turbine engine. The coating contains the gamma-prime (Ni3Al) nickel aluminide intermetallic phase and either the beta (NiAl) nickel aluminide intermetallic phase or the gamma solid solution phase. The coating has an average aluminum content of 14 to 30 atomic percent and an average platinum-group metal content of at least 1 to less than 10 atomic percent, the balance of the coating being nickel, one or more of chromium, silicon, tantalum, and cobalt, optionally one or more of hafnium, yttrium, zirconium, lanthanum, and cerium, and incidental impurities.
摘要翻译:适用于在敌对热环境中使用的组件的表面上用作环境保护涂层的金属间组合物,包括燃气涡轮发动机的涡轮机,燃烧器和增压器部分。 该涂层含有γ-prime(Ni 3 Al 3)铝铝化物金属间相和β(NiAl)镍铝化物金属间相或γ固溶体相。 该涂层的平均铝含量为14〜30原子%,平均铂族金属含量为1〜10原子%以下,镀层为镍,铬,硅,钽, 和钴,任选地一种或多种铪,钇,锆,镧和铈以及附带的杂质。
摘要:
A PVD process and apparatus for depositing a coating from multiple sources of materials with different vapor pressures. The process entails forming molten pools of different first and second materials in a coating chamber of the apparatus, supporting an article within the chamber, and evaporating the molten pools with an energy beam to deposit a coating on the article with a controlled composition that contains at least a first metal and a relatively lesser amount of at least one reactive metal having a lower vapor pressure than the first metal. The first material contains at least the first metal, and the second material contains the reactive metal and at least a second metal. The second and reactive metals are combined to cause the second material to have a lower melting temperature and wider melting range than the reactive metal.