Abstract:
A barrier coating system may include a super alloy or ceramic matrix composite (CMC) substrate underneath a bond coat. The barrier coating system may also include a calcium-magnesium aluminosilicate (CMAS) resistant coating configured to protect metallic, or oxide-based or silicon based components in a harsh CMAS environment.
Abstract:
The present inventions incorporate self-healing mechanisms into current and future EBC systems. Such approaches have the potential to form environmental protection materials (i.e. thermally grown silicate compositions) in-situ to enable the ability to provide environmental protection to SiC based ceramics even in the event that cracks or voids form from within the EBC layer. In this disclosure, novel, self-healing EBC systems are disclosed along with coating synthesis techniques required to deposit the materials, microstructures and architectures. This research is anticipated to result in a thermal/environmental barrier coating system (T/EBC) that provides improved durability over current coatings. These advancements will aid the use of Si-based ceramics in a range of high temperature applications such a gas turbine engines and heat exchangers. These advances will not only benefit military engines, but also commercial and industrial engines requiring greater performance.
Abstract:
A thermal barrier coating composition including a base oxide; a primary dopant including ytterbia; a first co-dopant including samaria; and a second co-dopant including at least one of lutetia, scandia, ceria, gadolinia, neodymia, or europia.
Abstract:
A heat resistant member includes a metal or ceramic substrate and a thermal-barrier coating layer disposed on the substrate. The thermal-barrier coating layer includes a metal layer functioning as a bonding layer and one or more ceramic layers disposed on the metal layer. At least one of the ceramic layers is mainly composed of a hafnium oxide-based ceramic layer containing 85% or more of hafnium oxide. Due to the above structure, there can be provided a heat resistant member with high heat resistance and durability which has a thermal-barrier coating layer with stable thermal conductivity at elevated temperatures, namely, not less than 1,200° C., and resistance to cracking and delamination due to sintering.
Abstract:
A coating system for Si-containing materials, particularly Si-based composites used to produce articles exposed to high temperatures. The coating system is a compositionally-graded thermal/environmental barrier coating (T/EBC) system that includes an intermediate layer containing yttria-stabilized hafnia (YSHf) and mullite, alumina and/or an aluminosilicate, which is used in combination with an inner layer between a Si-containing substrate and the intermediate layer and a thermal-insulating top coat overlying the intermediate layer. The intermediate layer provides environmental protection to the silicon-containing substrate, and has a coefficient of thermal expansion between that of the top coat and that of the inner layer so as to serve as a transition layer therebetween. The intermediate layer is particular well suited for use in combination with an inner layer of an alkaline earth metal aluminosilicate (such as BSAS) and a top coat formed of YSZ or YSHf.
Abstract:
In accordance with an embodiment of the invention, an article is provided. The article comprises a substrate comprised of silicon containing material, an environmental barrier coating (EBC) overlying the substrate and a thermal barrier coating (TBC) on the environmental barrier coating. The thermal barrier coating comprising a compound having a rhombohedral phase.
Abstract:
An article comprising a substrate formed of a silicon-comprising material, such as an article exposed to the hostile thermal environment of a gas turbine engine. The article further comprises an environmental barrier layer, e.g., an alkaline earth metal aluminosilicate, and a top coat comprising zirconia or hafnia stabilized with an oxide of a metal selected from the group consisting of magnesium, calcium, scandium, yttrium, and lanthanide metals, and mixtures thereof. The article further comprises a transition layer between the environmental barrier layer and the top coat, the transition layer comprising zirconia or hafnia stabilized with an oxide of a metal selected from the group consisting of magnesium, calcium, scandium, yttrium, and lanthanide metals; and a low CTE oxide selected from the group consisting of niobia and tantala; and mixtures thereof. A method for preparing a thermal/environmental barrier coating system on a substrate formed of a silicon-comprising material is also disclosed.
Abstract:
An environmental barrier coating includes a barrier layer which includes a matrix, diffusive particles, and gettering particles; and a calcium-magnesia alumina-silicate (CMAS)-resistant component. The CMAS-resistant component includes hafnium silicate and a rare earth hafnate. An article and a method of fabricating an article are also disclosed.
Abstract:
A method of making a multilayer environmental barrier coating for a ceramic matrix composite is provided, comprising the steps of: plasma spray coating an oxide-based bond coat over top of the ceramic matrix composite and depositing a columnar top coat over the oxide-based bond coat.
Abstract:
A coating system on a superalloy or silicon-containing substrate of an article exposed to high temperatures. The coating system includes a coating layer that overlies the substrate and is susceptible to hot corrosion promoted by molten salt impurities. A corrosion barrier coating overlies the coating layer and contains at least one rare-earth oxide-containing compound that reacts with the molten salt impurities to form a dense, protective byproduct barrier layer.