Abstract:
Provided is an organic light-emitting device including a first electrode, a second electrode, an emission layer between the first electrode and the second electrode, and a hole transport region between the first electrode and the emission layer, wherein the hole transport region includes an auxiliary layer, the auxiliary layer including at least one amine-based compound represented by Formula 1: where R11, R12, R13, R14, R15, R16, X11, L11, L12, L13, a11, a12, a13, b15, and b16 are as defined in the specification.
Abstract:
A compound is represented by Formula 1, and an organic light-emitting device includes the compound. Embodiments of the compound have excellent electrical properties, high charge-transporting and emission capabilities, high glass transition temperature, and are capable of reducing crystallization. Embodiments of organic light-emitting devices including the compound have high efficiency, low driving voltage, high brightness, and long lifespan.
Abstract:
A condensed cyclic compound represented by Formula 1: Also disclosed is an organic light-emitting device including a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer and the condensed cyclic compound of Formula 1. An organic light-emitting device including the condensed cyclic compound of Formula 1 may have low driving voltage, high efficiency, a high luminance, and long lifetime.
Abstract:
An anthracene-based compound is represented by Formula 1 as below: wherein Ar, R1 to R3, R11 to R13, L1, L2, a1 to a3, b1, b2, n1, n2, m1, m2, o1 and o2 are as defined in the specification. An organic light-emitting device includes the anthracene-based compound.
Abstract:
A compound represented by Formula 1 below may be used in an organic light emitting diode. Additionally, in some embodiments, an organic light-emitting diode includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode and including the compound represented by Formula 1.
Abstract:
Provided is a heterocyclic compound represented by Formula 1 below and an organic light-emitting device including the same. In Formula 1, R1 to R8 are each independently a hydrogen atom, a deuterium atom, a substituted or unsubstituted C1 to C60 alkyl group, a substituted or unsubstituted C3 to C60 cycloalkyl group, a substituted or unsubstituted C2 to C60 heteroaryl group, a substituted or unsubstituted C6 to C60 aryl group, or a substituted or unsubstituted C6 to C60 condensed polycyclic group, with the proviso that R2 is not wherein X is O, S, or Se.
Abstract:
Provided are an organic light emitting device including: a substrate; a first electrode; a second electrode; and an organic layer interposed between the first electrode and the second electrode and including an emission layer, wherein one of the first electrode and the second electrode is a reflective electrode and the other is a semitransparent or transparent electrode, and wherein the organic layer includes a layer having at least one of the compounds having at least one carbazole group, and a flat panel display device including the organic light emitting device. The organic light emitting device has low driving voltage, excellent current density, high brightness, excellent color purity, high efficiency, and long lifetime.
Abstract:
Provided are heterocyclic compounds represented by general Formula 1 below and organic light-emitting devices including the same: Such N-substituted diarylamino derivatives of 4,5-iminophenanthrene, when included in color fluorescent or phosphorescent organic light emitting devices in a hole transporting or hole injecting charge transport role, impart high efficiency, low driving voltages, high luminances and long lifetimes to these devices.