Abstract:
The present disclosure includes a main body, a cleaning tool assembly connected to the main body to be movable in at least one axial direction, a handle part connected to the main body and configured to receive an applied force of a user, a detection part provided in the handle part and configured to detect a magnitude and a direction of the force applied to the handle part, and a control part configured to control the movement direction of the cleaning tool assembly based on the detected direction of the force and to control the movement distance of the cleaning tool assembly based on the detected magnitude of the force. In this way, the steering performance may be improved by reducing a horizontal load felt by a user when the user holds and moves the handle of the cleaner, fatigue felt when performing the cleaning operation may be removed by removing a vertical load applied by the handle, and convenience may be improved.
Abstract:
Provided is a cleaning robot including a main body; a driving unit configured to move the main body; a communication unit configured to establish wireless communication with a user terminal to which a manipulation command is input; and a controller configured to transmit a position detecting signal to the user terminal, and detect a position of the user terminal based on a time difference between the position detecting signal and a response signal transmitted from the user terminal.
Abstract:
A cleaning robot includes a non-circular main body, a moving assembly mounted on a bottom surface of the main body to perform forward movement, backward movement and rotation of the main body, a cleaning tool assembly mounted on the bottom surface of the main body to clean a floor, a detector to detect an obstacle around the main body, and a controller to determine whether an obstacle is present in a forward direction of the main body based on a detection signal of the detector, control the rotation of the main body to determine whether the main body rotates by a predetermined angle or more upon determining that the obstacle is present in the forward direction, and determine that the main body is in a stuck state to control the backward movement of the main body if the main body rotates by the predetermined angle or less.
Abstract:
A robot cleaner includes a housing a sensor assembly disposed in the housing, wherein the sensor assembly comprises a light source configured to emit light toward an area in front of the housing; a camera unit comprising a lens; a reflector configured to reflect light incident on a front of the housing toward a front region of the lens; and a guide member hollow inside configured to guide light incident on a top of the housing toward a rear region of the lens. The robot cleaner estimates a current position of the robot cleaner more accurately by correcting the current position of the robot cleaner estimated by using odometry information based on images acquired by the camera unit.
Abstract:
A cleaning robot may include a main body, a driver configured to move the main body, a cleaner configured to clean a cleaning space, and a controller configured to set at least one area among a plurality of areas included in the cleaning space as a cleaning area while the main body moves, and clean the cleaning area when the cleaning area is set.
Abstract:
A robot cleaner capable of moving in diverse directions and enhancing cleaning efficiency by increasing frictional force between a pad and a floor includes two or more driving units. Each of the driving units includes plural motors, a first subframe connected to at least any one of the motors and configured to rotate by receiving rotational force from the motor, a rotating plate assembly mounted to the first subframe and configured to be slanted with respect to a floor by rotation of the first subframe and to rotate clockwise or counterclockwise by receiving rotational force from another motor, and a pad provided at the rotating plate assembly and configured to contact the floor. When the rotating plate assembly is slanted with respect to the floor, nonuniform frictional force is generated between the pad and the floor, through which the robot cleaner travels.
Abstract:
A control method of a robot cleaner for traveling to clean includes checking information about a predetermined traveling pattern; determining a traveling trajectory based on a traveling speed; generating a traveling pattern based on the determined traveling trajectory and the information about the predetermined traveling pattern, wherein the traveling pattern includes a first straight path, a first rotation path connected to the first straight path and for rotation in a first direction, a second straight path connected to the first rotation path, and a second rotation path connected to the second straight path and for rotation in a second direction; and repeatedly traveling along the generated traveling pattern at regular intervals. Therefore, since the robot cleaner performs cleaning without scattering dust, the efficiency of cleaning may be improved.
Abstract:
A method of localization and mapping of a mobile robot may reduce position errors in localization and mapping using a plurality of vector field sensors. The method includes acquiring a relative coordinate in a movement space using an encoder, acquiring an absolute coordinate in the movement space by detecting intensity and direction of a signal using vector field sensors, defining a plurality of virtual cells on a surface of the movement space such that each of the cells has a plurality of nodes having predetermined positions, and updating position information about the nodes of the cells based on the relative coordinate acquired through the encoder and the absolute coordinate acquired through the vector field sensors and implementing localization and mapping in the movement space in a manner that position information of a new node is estimated while position information of a previous node is determined.
Abstract:
A method of localization and mapping of a mobile robot may reduce position errors in localization and mapping using a plurality of vector field sensors. The method includes acquiring a relative coordinate in a movement space using an encoder, acquiring an absolute coordinate in the movement space by detecting intensity and direction of a signal using vector field sensors, defining a plurality of virtual cells on a surface of the movement space such that each of the cells has a plurality of nodes having predetermined positions, and updating position information about the nodes of the cells based on the relative coordinate acquired through the encoder and the absolute coordinate acquired through the vector field sensors and implementing localization and mapping in the movement space in a manner that position information of a new node is estimated while position information of a previous node is determined.