Abstract:
A potential of a gate of a driving transistor is fixed, and the driving transistor is operated in a saturation region, so that a current is supplied thereto anytime. A current control transistor operating in a linear region is disposed serially with the driving transistor, and a video signal for transmitting a signal of emission or non-emission of the pixel is input to a gate of the current control transistor via a switching transistor.
Abstract:
A light emitting device and an element substrate which are capable of suppressing variations in the luminance intensity of a light emitting element among pixels due to characteristic variations of a driving transistor without suppressing off-current of a switching transistor low and increasing storage capacity of a capacitor. According to the invention, a depletion mode transistor is used as a driving transistor. The gate of the driving transistor is fixed in its potential or connected to the source or drain thereof to operate in a saturation region with a constant current flow. A current controlling transistor which operates in a linear region is connected in series to the driving transistor, and a video signal for transmitting a light emission or non-emission of a pixel is inputted to the gate of the current controlling transistor through a switching transistor.
Abstract:
The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced.
Abstract:
A light emitting device and an element substrate which are capable of suppressing variations in the luminance intensity of a light emitting element among pixels due to characteristic variations of a driving transistor without suppressing off-current of a switching transistor low and increasing storage capacity of a capacitor. According to the invention, a depletion mode transistor is used as a driving transistor. The gate of the driving transistor is fixed in its potential or connected to the source or drain thereof to operate in a saturation region with a constant current flow. A current controlling transistor which operates in a linear region is connected in series to the driving transistor, and a video signal for transmitting a light emission or non-emission of a pixel is inputted to the gate of the current controlling transistor through a switching transistor.
Abstract:
The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced.
Abstract:
A light emitting device that achieves long life, and which is capable of performing high duty ‘drive,’ by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element (109) is performed one row at a time by forming a reverse bias electric power source line (112) and a reverse bias TFT (108). Reverse bias application can therefore be performed in synchronous with operations for write-in of an image signal, light emission, erasure, and the like. Reverse bias application therefore becomes possible while maintaining a duty equivalent to that of a conventional driving method.
Abstract:
The present invention provides a TFT that has a channel length particularly longer than that of an existing one, specifically, several tens to several hundreds times longer than that of the existing one, and thereby allowing turning to an on-state at a gate voltage particularly higher than the existing one and driving, and allowing having a low channel conductance gd. According to the present invention, not only the simple dispersion of on-current but also the normalized dispersion thereof can be reduced, and other than the reduction of the dispersion between the individual TFTs, the dispersion of the OLEDs themselves and the dispersion due to the deterioration of the OLED can be reduced.
Abstract:
A-light-emitting device which realizes a high aperture ratio and in which the quality of image is little affected by the variation in the characteristics of TFTs. The channel length of the driving TFTs is selected to be very larger than the channel width of the driving TFTs to improve current characteristics in the saturated region, and a high VGS is applied to the driving TFTs to obtain a desired drain current. Therefore, the drain currents of the driving TFTs are little affected by the variation in the threshold voltage. In laying out the pixels, further, wiring is arranged under the partitioning wall and the driving TFTs are arranged under the wiring in order to avoid a decrease in the aperture ratio despite of an increase in the size of the driving TFT.
Abstract:
A light emitting device that achieves long life, and which is capable of performing high duty ‘drive,’ by suppressing initial light emitting element deterioration is provided. Reverse bias application to an EL element (109) is performed one row at a time by forming a reverse bias electric power source line (112) and a reverse bias TFT (108). Reverse bias application can therefore be performed in synchronous with operations for write-in of an image signal, light emission, erasure, and the like. Reverse bias application therefore becomes possible while maintaining a duty equivalent to that of a conventional driving method.