Abstract:
Provided is a novel liquid crystal composition that can be used for a variety of liquid crystal devices. The novel liquid crystal composition exhibits a blue phase and includes a binaphthyl compound represented by a general formula (G1) as a chiral agent. In the general formula (G1), Ar2 represents any of an aryl group having 6 to 12 carbon atoms and a cycloalkyl group having 3 to 12 carbon atoms; n is 0 to 3; and one of R and R1 represents a substituent represented by a general formula (G2) and the other represents hydrogen. In the general formula (G2), Ar1 represents any of an aryl group having 6 to 12 carbon atoms and a cycloalkyl group having 3 to 12 carbon atoms; and k is 1 to 3.
Abstract:
A display device including a circuit suitable for controlling a liquid crystal element is provided. The display device includes two memories in one pixel and a plurality of pixels arranged in the horizontal and vertical directions share a gate line. The display device includes a liquid crystal element and by writing charges to different polarity capacitors, power consumption in an inversion operation can be reduced. Furthermore, a liquid crystal element with a high threshold voltage can be suitably used and a wide range of voltages can be applied without impairing grayscale display characteristics in the display device. Furthermore, a voltage higher than or equal to an output voltage of a source driver can be applied to the liquid crystal element.
Abstract:
A display device that can switch between normal display and see-through display is provided. Visibility in see-through display is improved. A liquid crystal element overlaps with a light-emitting element. The light-emitting element, a transistor, and the like overlapping with the liquid crystal element transmit visible light. When the liquid crystal element blocks external light, an image is displayed with the light-emitting element. When the liquid crystal element transmits external light, an image displayed with the light-emitting element is superimposed on a transmission image through the liquid crystal element.
Abstract:
A display device in which a peripheral circuit portion has high operation stability is provided. The display device includes a first substrate and a second substrate. A first insulating layer is provided over a first surface of the first substrate. A second insulating layer is provided over a first surface of the second substrate. The first surface of the first substrate and the first surface of the second substrate face each other. An adhesive layer is provided between the first insulating layer and the second insulating layer. A protective film in contact with the first substrate, the first insulating layer, the adhesive layer, the second insulating layer, and the second substrate is formed in the vicinity of a peripheral portion of the first substrate and the second substrate.
Abstract:
A novel light-emitting device or light-emitting panel in which reflected external light is reduced is provided. A novel display panel in which reflected external light is reduced is provided. The present inventors have conceived a light-emitting device including a light-emitting module that emits light with a spectrum having a peak at one wavelength in a visible light region and an absorption layer that absorbs part of light with wavelengths shorter than the one wavelength and part of light with wavelengths longer than the one wavelength more easily than light with the one wavelength.
Abstract:
A novel display panel that can be used as a reflective display panel in an environment with strong external light and as a self-luminous display panel in a dim environment, for example and that has low power consumption and is highly convenient or reliable is provided. The display panel includes a pixel and a substrate that supports the pixel. The pixel includes a first display element (e.g., a reflective liquid crystal element) that includes a reflective film having an opening as a first conductive film and a second display element (e.g., an organic EL element) that emits light to the opening.
Abstract:
To provide a novel display panel that is highly convenient or reliable. To provide a novel input and output device that is highly convenient or reliable. To provide a novel data processing device that is highly convenient or reliable. To provide a method for manufacturing a novel display panel that is highly convenient or reliable. The display panel includes a pixel, a third conductive film electrically connected to the pixel, an insulating film including an opening portion overlapping with the third conductive film, and an electrode including a first region in contact with the third conductive film and a second region functioning as a contact point.
Abstract:
To provide a liquid crystal display device suitable for a thin film transistor which uses an oxide semiconductor. In a liquid crystal display device which includes a thin film transistor including an oxide semiconductor layer, a film having a function of attenuating the intensity of transmitting visible light is used as an interlayer film which covers at least the oxide semiconductor layer. As the film having a function of attenuating the intensity of transmitting visible light, a coloring layer can be used and a light-transmitting chromatic color resin layer is preferably used. An interlayer film which includes a light-transmitting chromatic color resin layer and a light-blocking layer may be formed in order that the light-blocking layer is used as a film having a function of attenuating the intensity of transmitting visible light.
Abstract:
A semiconductor device including an oxide semiconductor and an organic resin film is manufactured in the following manner. Heat treatment is performed on a first substrate provided with an organic resin film over a transistor including an oxide semiconductor in a reduced pressure atmosphere; handling of the first substrate is performed in an atmosphere containing moisture as little as possible in an inert gas (e.g., nitrogen) atmosphere with a dew point of lower than or equal to −60° C., preferably with a dew point of lower than or equal to −75° C. without exposing the first substrate after the heat treatment to the air; and then, the first substrate is bonded to a second substrate that serves as an opposite substrate.
Abstract:
In a light-emitting device where reflective electrodes are regularly arranged, occurrence of interference fringes due to reflection of light reflected by the reflective electrode is inhibited. A surface of the reflective electrode of a light-emitting element is provided with a plurality of depressions. The shapes of the plurality of depressions are different from each other and do not have rotational symmetry. Irregularity of the surface shape of the reflective electrode is increased, which inhibits interference of light reflected by the reflective electrode. To form the plurality of depressions in the surface of the reflective electrode, for example, a surface of an insulating layer that is a base of the reflective electrode is made uneven. Reflecting the surface shape of the insulating layer, the reflective electrode has an uneven surface.