Abstract:
The disclosure relates to methods for improving the DRX operation of a UE by introducing an additional DRX wake-up cycle, which runs in parallel to the short and/or long DRX cycle. The DRX wake-up cycle defines time intervals after which the UE starts monitoring the PDCCH for a wake-up duration of time; the UE does not perform any other operation during the wake-up duration apart from monitoring the PDCCH. The time intervals of the wake-up cycle between the wake-up durations are preferably shorter than the one of the DRX long cycle, and may have the same or a shorter length than the ones of the DRX short cycle. The wake-up duration may be as long as the on-duration of the DRX short/long cycle, or may be preferably much shorter, such as only one or a few subframes.
Abstract:
The invention relates to a method for dynamically indicating a TDD reconfiguration to the mobile station by encoding the dynamic TDD re-configuration indication into the DCI or CRC calculated for the DCI. In one embodiment, the TDD configuration indication is implicitly encoded as an RNTI into the CRC, when scrambling the CRC for the DCI with a TDD-RNTI. In another embodiment, the TDD configuration indication is part of the DCI payload, while the CRC for the DCI is scrambled with a cell identifier, identifying the target cell for which the dynamic TDD re-configuration is to be applied. In still another embodiment, the TDD configuration indication is part of the DCI payload, where the DCI payload further includes an invalid parameter indicating to the mobile station that the DCI carries the TDD configuration indication.
Abstract:
The present disclosure relates to transmitting transport blocks in subframes of a predefined length within a wireless communication system. A downlink control information including a resource grant comprising a predetermined modulation and a predetermined transport block size is received (user equipment is the transmitter) or generated (base station is the transmitter). Then transport block including channel coded data to be transmitted in a subframe with the predetermined modulation and the predetermined transport block size is generated. Sensing is performed in the subframes and based thereon, it is determined whether a partial subframe or a complete subframe is available for transmission of the generated transport block. Finally, the transport block is transmitted with a modified modulation different from the predetermined modulation if the partial rather than complete subframe is available. Correspondingly, at the receiver, the grant is received (user equipment is receiver) or generated (base station is the receiver), the size of the subframe in which the reception is expected is determined and then the transport block is received with a modified modulation if only the partial subframe is available.
Abstract:
This invention concerns concepts for signaling resource allocation information to a terminal that indicates to the terminal assigned resources for the terminal. The terminal can receives downlink control information (DCI), which comprises a field for indicating the resource allocation information of the terminal. This resource assignment field within the DCI has a predetermined number of bits. The terminal can determines its assigned resource allocation information from the content of the received DCI, even though the bit size of the resource allocation field in the received DCI is insufficient to represent all allowed resource allocations. According to an embodiment, the received bits that are signaled to the terminal in the DCI represent predetermined bits of the resource allocation information. All remaining one or more bits of the resource allocation information that are not included in the field of the received DCI are set to predetermined value.
Abstract:
This invention relates to a proposal of an uplink resource assignment format and a downlink resource assignment format. Furthermore, the invention relates to the use of the new uplink/downlink resource assignments in methods for (de)activation of downlink component carrier(s) configured for a mobile terminal, a base station and a mobile terminal. To enable efficient and robust (de)activation of component carriers, while minimizing the signaling overhead, the invention proposes a new uplink/downlink resource assignment format that allow the activation/deactivation of individual downlink component carriers configured for a mobile. The new uplink or downlink resource assignment comprises an indication of the activation state of the configured downlink component carriers, i.e., indicate which downlink component carrier(s) is/are to be activated or deactivated. This indication is for example implemented by means of a bit-mask that indicates which of the configured uplink component carriers are to be activated respectively deactivated.
Abstract:
The present disclosure relates to adaptive modulation and coding scheme selection and signaling in a communication system. In particular, a modulation and coding scheme to be used for transmission of a data is selected from a set of predetermined modulation and coding schemes. The predetermination of the set is performed by selecting the set from a plurality of predefined sets. The sets have the same size, so that a modulation and coding selection indicator signaled to select the modulation and coding scheme may be advantageously applied to any of the selected sets. Moreover, a second set includes schemes with a modulation not covered by the schemes of a first set, and which is of a higher order than any modulation in the first set.
Abstract:
The invention relates to a method for dynamically indicating a TDD reconfiguration to the mobile station by encoding the dynamic TDD re-configuration indication into the DCI or CRC calculated for the DCI. In one embodiment, the TDD configuration indication is implicitly encoded as an RNTI into the CRC, when scrambling the CRC for the DCI with a TDD-RNTI. In another embodiment, the TDD configuration indication is part of the DCI payload, while the CRC for the DCI is scrambled with a cell identifier, identifying the target cell for which the dynamic TDD re-configuration is to be applied. In still another embodiment, the TDD configuration indication is part of the DCI payload, where the DCI payload further includes an invalid parameter indicating to the mobile station that the DCI carries the TDD configuration indication.
Abstract:
The present disclosure relates to transmitting transport blocks in subframes of a predefined length within a wireless communication system. A downlink control information including a resource grant comprising a predetermined modulation and a predetermined transport block size is received (user equipment is the transmitter) or generated (base station is the transmitter). Then transport block including channel coded data to be transmitted in a subframe with the predetermined modulation and the predetermined transport block size is generated. Sensing is performed in the subframes and based thereon, it is determined whether a partial subframe or a complete subframe is available for transmission of the generated transport block. Finally, the transport block is transmitted with a modified modulation different from the predetermined modulation if the partial rather than complete subframe is available. Correspondingly, at the receiver, the grant is received (user equipment is receiver) or generated (base station is the receiver), the size of the subframe in which the reception is expected is determined and then the transport block is received with a modified modulation if only the partial subframe is available.
Abstract:
The invention relates to methods for communicating within a communication system when re-configured from a source to a target uplink/downlink configuration. The invention is also providing mobile station for performing these methods, and computer readable media the instructions of which cause the mobile station to perform the methods described herein. Specifically, the invention suggests to perform PUSCH transmissions in response to Downlink Control Information, DCI, transmissions such that the source uplink/downlink configuration is applied to PUSCH transmissions relating to DCI transmissions received up to and including subframe N−6, a predefined uplink/downlink configuration is applied to PUSCH transmissions relating to DCI transmissions received during subframes N−5 to N−1; and the target uplink/downlink configuration is applied to PUSCH transmissions relating to DCI transmissions received from subframe N onward.
Abstract:
The present invention relates to providing control information within a search space for blind decoding in a multi-carrier communication system. In particular, the control information is carried within a sub-frame of the communication system, the sub-frame including a plurality of control channel elements. The control channel elements may be aggregated into candidates for blind decoding. The number of control channel elements in a candidate is called aggregation level. In accordance with the present invention, the candidates of lower aggregation levels are localized, meaning that the control channel elements of one candidate are located adjacently to each other in the frequency domain. Some candidates of the higher aggregation level(s) are distributed in the frequency.