摘要:
A device having thin-film transistor (TFT) floating gate memory cell structures is provided. The device includes a substrate, a dielectric layer on the substrate, and one or more source or drain regions being embedded in the dielectric layer. the dielectric layer being associated with a first surface. Each of the one or more source or drain regions includes an N+ polysilicon layer on a diffusion barrier layer which is on a first conductive layer. The N+ polysilicon layer has a second surface substantially co-planar with the first surface. Additionally, the device includes a P− polysilicon layer overlying the co-planar surface and a floating gate on the P− polysilicon layer. The floating gate is a low-pressure CVD-deposited silicon layer sandwiched by a bottom oxide tunnel layer and an upper oxide block layer. Moreover, the device includes at least one control gate made of a P+ polysilicon layer overlying the upper oxide block layer. A method of making the same memory cell structure is provided and can be repeated to integrate the structure three-dimensionally.
摘要:
The invention provides a phase change memory and a method for forming the phase change memory. The phase change memory includes a storage region and a peripheral circuit region. The peripheral circuit region has a peripheral substrate, a plurality of peripheral shallow trench isolation (STI) units in the peripheral substrate, and at least one MOS transistor on the peripheral substrate and between the peripheral STI units. The storage region has a storage substrate, an N-type ion buried layer on the storage substrate, a plurality of vertical LEDs on the N-type ion buried layer, a plurality of storage shallow trench isolation (STI) units between the vertical LEDs, and a plurality of phase change layers on the vertical LED and between the storage STI units. The storage STI units have thickness substantially equal to thickness of the vertical LEDs. The peripheral STI units have thickness substantially equal to thickness of the storage STI units. The N-type conductive region contains SiC. A top of P-type conductive region is flush with a top of the peripheral substrate. The N-type conductive region containing SiC reduces drain current through the vertical LED and raises current efficiency of the vertical LED. The peripheral circuit region can work normally without adverse influence on performance of the phase change memory.
摘要:
The present invention relates to a semiconductor device and its manufacturing method. The semiconductor device comprises: a gate structure located on a substrate, Ge-containing semiconductor layers located on the opposite sides of the gate structure, a doped semiconductor layer epitaxially grown between the Ge-containing semiconductor layers, the bottom surfaces of the Ge-containing semiconductor layers located on the same horizontal plane as that of the epitaxial semiconductor layer. The epitaxial semiconductor layer is used as a channel region, and the Ge-containing semiconductor layers are used as source/drain extension regions.
摘要:
Disclosed are atomic layer deposition method and a semiconductor device including the atomic layer, including the steps: placing a semiconductor substrate in an atomic layer deposition chamber; feeding a first precursor gas to the semiconductor substrate within the chamber to form a first discrete monolayer on the semiconductor substrate; feeding an inert purge gas to the semiconductor substrate within the chamber to remove the first precursor gas which has not formed the first discrete monolayer on the semiconductor substrate; feeding a second precursor gas to the chamber to react with the first precursor gas which has formed the first discrete monolayer, forming a discrete atomic size islands; and feeding an inert purge gas to the semiconductor substrate within the chamber to remove the second precursor gas which has not reacted with the first precursor gas and byproducts produced by the reaction between the first and the second precursor gases.
摘要:
A semiconductor non-volatile memory (NVM) device, comprising: a semiconductor substrate; a three-layer stack structure of medium layer-charge trapping layer-medium layer disposed on the semiconductor substrate; a gate disposed above the three-layer stack structure; a source and a drain disposed in the semiconductor substrate at either side of the three-layer stack structure; wherein the charge trapping layer is a dielectric layer containing one or more discrete compound clusters formed by atomic layer deposition (ALD) method.
摘要:
A method for forming atomic layer deposition. The method includes placing a semiconductor substrate (e.g., wafer, LCD panel) including an upper surface in a chamber. The upper surface includes one or more carbon bearing species and a native oxide layer. The method includes introducing an oxidizing species into the chamber. The method includes treating the upper surface of the semiconductor substrate to remove the one or more carbon bearing species and form a particle film of silicon dioxide overlying the upper surface. The method includes introducing an inert gas into the chamber to purge the chamber of the oxidizing species and other species associated with the one or more carbon bearing species. A reducing species is introduced into the chamber to strip the particle film of silicon dioxide to create a substantially clean surface treated with hydrogen bearing species. The method includes performing another process (e.g., atomic layer deposition) on the substantially clean surface while the substrate is maintained in a vacuum environment. The substantially clean surface is substantially free from native oxide and carbon bearing particles.
摘要:
A dynamic random access memory device including a capacitor structure, e.g., trench, stack. The device includes a substrate (e.g., silicon, silicon on insulator, epitaxial silicon) having a surface region. The device includes an interlayer dielectric region overlying the surface region. In a preferred embodiment, the interlayer dielectric region has an upper surface and a lower surface. The device has a container structure within a portion of the interlayer dielectric region. The container structure extends from the upper surface to the lower surface. The container structure has a first width at the upper surface and a second width at the lower surface. The container structure has an inner region extending from the upper surface to the lower surface. In a specific embodiment, the container structure has a higher dopant concentration within a portion of the inner region within a vicinity of the lower surface and on a portion of the inner region near the vicinity of the lower surface. The device also has a doped polysilicon layer overlying the inner region of the trench structure. The device has a first hemispherical grained silicon material having a first grain dimension near the vicinity of the lower surface and a second hemispherical grained silicon material having a second grain dimension near a vicinity of the upper surface of the container structure. In a preferred embodiment, the first grain dimension has an average size of no greater than about ½ of an average size of the second grain dimension to prevent any bridging of any portions of the hemispherical grained silicon material within the vicinity of the lower surface.
摘要:
A method and apparatus for storing a brush body, made of a hydrophilic sponge-like porous material in a readily usable condition employs a substrate cleaning brush stored in a vessel, which vessel is filled with liquid such that the brush body is submerged in the liquid.
摘要:
A structure and its fabrication method of an integrated semiconductor device including circuit elements such as MOSFETs. A well is formed in the semiconductor substrate within windows of a field oxide layer. A lightly-doped semiconductor layer is selectively formed on the exposed surface of the well. A channel region and a pair of source and drain regions of a MOSFET are formed in the lightly-doped semiconductor layer. The highly-doped buried semiconductor layer of the same conductivity type as that of the lightly-doped semiconductor layer is formed under the channel region in the lightly-doped semiconductor layer. The structural features and fabrication method provides a great degree of freedom in designing a MOSFET having a further shorter-channel length without deteriorating its drivability and punch-through breakdown voltage.
摘要:
A structure and its fabrication method of an integrated semiconductor device including circuit elements such as MOSFETs. A well is formed in the semiconductor substrate within windows of a field oxide layer. A lightly-doped semiconductor layer is selectively formed on the exposed surface of the well. A channel region and a pair of source and drain regions of a MOSFET are formed in the lightly-doped semiconductor layer. The highly-doped buried semiconductor layer of the same conductivity type as that of the lightly-doped semiconductor layer is formed under the channel region in the lightly-doped semiconductor layer. The structural features and fabrication method provides a great degree of freedom in designing a MOSFET having a further shorter-channel length without deteriorating its drivability and punch-through breakdown voltage.