Abstract:
A charged particle beam apparatus capable of automatically measuring an image magnification error of an apparatus and capable of automatically calibrating the image magnification in high precision is provided. To this end, while an image processing operation of either an auto-correlation function or an FFT transformation is employed with respect to a scanning image of a reference material having a periodic structure, the averaged pitch dimension of which is known, averaged periodic information owned by the scanning image is detected so as to measure an image magnification error of the apparatus. Also, the information as to the acquired image magnification error is fed back to an image magnification control means of the apparatus so as to automatically execute a calibration as to the image magnification in high precision.
Abstract:
Equipment extracts components of spatial frequency that need to be evaluated in manufacturing a device or in analyzing a material or process out of edge roughness on fine line patterns and displays them as indexes. The equipment acquires data of edge roughness over a sufficiently long area, integrates a components corresponding to a spatial frequency region being set on a power spectrum by the operator, and displays them on a length measuring SEM. Alternatively, the equipment divides the edge roughness data of the sufficiently long area, computes long-period roughness and short-period roughness that correspond to an arbitrary inspection area by performing statistical processing and fitting based on theoretical calculation, and displays them on the length measuring SEM.
Abstract:
It is facilitated in a scanning electron microscope to save the labor of executing the reproduction test, conduct basic analysis on a problem caused in execution of the automatic observation process, and confirm details resulting in the error. Upon detecting an error from an abnormality, the scanning electron microscope extracts a sample image Im(t2) obtained by retroceding from a sample image Im(te) stored so as to be associated with time te of error occurrence by a predetermined video quantity (for example, total recording time period t2) previously set and registered by an input-output device, from sample images stored in a recording device while being overwritten, and stores a resultant sample image in another recording device.
Abstract:
An object of the present invention is to provide a scanning electron microscope for reducing a process concerning inspection positioning or an input operation, thereby functioning with high precision at high speed. To accomplish the above object, the present invention provides a scanning electron microscope having a function for identifying a desired position on the basis of a pattern registered beforehand, which includes a means for setting information concerning the pattern kind, the interval between a plurality of parts constituting the pattern, and the size of parts constituting the pattern and a means for forming a pattern image composed of a plurality of parts on the basis of the information obtained by the concerned means.
Abstract:
An object of the present invention is to provide a scanning electron microscope for reducing a process concerning inspection positioning or an input operation, thereby functioning with high precision at high speed. To accomplish the above object, the present invention provides a scanning electron microscope having a function for identifying a desired position on the basis of a pattern registered beforehand, which includes a means for setting information concerning the pattern kind, the interval between a plurality of parts constituting the pattern, and the size of parts constituting the pattern and a means for forming a pattern image composed of a plurality of parts on the basis of the information obtained by the concerned means.
Abstract:
An object of the present invention is to provide a scanning electron microscope for reducing a process concerning inspection positioning or an input operation, thereby functioning with high precision at high speed. To accomplish the above object, the present invention provides a scanning electron microscope having a function for identifying a desired position on the basis of a pattern registered beforehand, which includes a means for setting information concerning the pattern kind, the interval between a plurality of parts constituting the pattern, and the size of parts constituting the pattern and a means for forming a pattern image composed of a plurality of parts on the basis of the information obtained by the concerned means.
Abstract:
A terminal crimping device is composed of an elevating crimper for crimping terminals onto the exposed conductors of cables and an anvil positioned opposite said crimper. The crimper is caused to ascend and descend by means of drive means including a servo motor. The controlling of the terminal crimping operation is done by monitoring the height of the crimper at the time of terminal crimping and the load applied to said drive means and comparing a detected load to the height with the preset reference data to determine whether the terminal crimping performance is good or not. Thus, a reliable determination whether the terminal crimping performance is good or not is performed.
Abstract:
An auto focusing apparatus of a scanning electron microscope includes an auto focusing mechanism which calculates a focus evaluation value, using an electron signal or picture signal generated from a specimen when the specimen is scanned by an electron beam focused by an objective lens, and controls an exciting current of the objective lens according to said focus evaluation value. A focus correction value register and a focus correction mechanism for correcting the focused position determined by the aforementioned auto focusing mechanism by as much as the correction value registered in the focus correction value register are provided.
Abstract:
In an apparatus that prepares wires necessary for electric wiring by measuring and cutting a length of a wire fed from a wire paying-out device, conveying the cut length of wire in a direction perpendicular to the axial direction of the paid-out wire, stripping wire end portions, and pressing an electrical connector by a connector pressing device, the present invention provides a configuration in which the apparatus can selectively comprise a connector pressing unit composed of a connector pressing device and a pedestal for supporting it on a platform next to the location of the above stripping device, whereby it will facilitate production on many-kinds-and-small-amounts basis as it needs no programming time or adjustment for the replacement of lots.