Abstract:
In an electron microscope, at least the characteristics of the specimen is set on a first image observation mode screen as an image observation condition. An observation image of the specimen is displayed on a first display section based on a condition set on the first image observation mode screen. Observation images of the specimen are displayed on a second display section as one or more secondary electron images or one or more reflection electron images under at least two types of image observation conditions based on the condition set on the first image observation mode screen. Any desired observation image is selected from among the observation images displayed on the second display section.
Abstract:
A method and apparatus for testing a substrate, wherein a particle beam is directed onto the substrate and emitted secondary particles are detected with a detector and then evaluated. The location of the site at which the secondary particles are emitted on the substrate relative to the position of the detector is taken into consideration during testing.
Abstract:
The present invention relates to a scanning electron microscope employing a deceleration field forming technology (retarding), more particularly a scanning electron microscope which separates and detects secondary electrons at high efficiency. The object of the present invention is accomplished by providing an electron source, a lens for condensing the primary electron beam which is emitted from said electron source, a detector for detecting electrons which are generated by radiation of the primary electron beam onto a specimen, a first deceleration means for decelerating the primary electron beam which is radiated onto said specimen, a second deceleration means for decelerating electrons which are generated on the specimen, and a deflector for deflecting said electrons which are decelerated by said second decelerating means.
Abstract:
The present invention is intended to highly fast, stably acquire highly accurate images from irradiated positions with an electron beam on a circuit pattern in the step of fabricating a semiconductor device including an insulating material or a mixture of an insulating material and a conductive material, without occurrence of any deviation in the irradiated position in the images to be comparatively inspected, automatically comparing the images with each other thereby inspecting defects of the circuit pattern without occurrence of errors, and feeding back the result to the conditions of fabricating the semiconductor device thereby increasing the reliability of the semiconductor device and reducing the defective percentage thereof. The dependence of the surface height of a workpiece on the corrected amount of deflection at a central portion of a workpiece stage is compared with that at the outer peripheral portion of the workpiece, to obtain a distortion amount inherent to the outer peripheral portion of the workpiece. The distortion amount is eliminated from an outer peripheral standard mark signal, to calculate the dependence of the height on the corrected amount of deflection at the outer peripheral portion, thereby obtaining the deflection correcting amount at the outer peripheral portion equivalent to that obtained at the central portion. Since a suitable deflection correcting table can be prepared only by using the outer peripheral standard mark, the deflection correcting table can be updated by repeating desired times calculation of the corrected amount of deflection at the outer peripheral portion while a wafer is left mounted. As a result, the deflection correcting table including the dependence of the surface height, which table is capable of keeping up with the drift of the electron beam or the like, can be accurately obtained without reducing the throughput.
Abstract:
A thin film is etched by irradiating charged particles to a surface of the thin film. An etching time of the thin film is measured by observing a change in intensity of secondary charged particles emitted by etched portions of the thin film. A thickness of the thin film is calculated in accordance with the measured etching time.
Abstract:
The present invention is intended to prevent the deterioration of resolution due to increase in off-axis aberration resulting from the deviation of a primary electron bean from the optical axis of a scanning electron microscope. A scanning electron microscope is provided with an image shifting deflector system including two deflectors disposed respectively at upper and lower stages. The deflector disposed at the lower stage is a multipole electrostatic deflecting electrode and is disposed in an objective. Even if the distance of image shifting is great, an image of a high resolution can be formed and dimensions can be measured in a high accuracy. The SEM is able to achieving precision inspection at a high throughput when applied to inspection in semiconductor device fabricating processes that process a wafer having a large area and provided with very minute circuit elements.
Abstract:
A particle beam apparatus includes a source for providing a primary particle beam along a primary beam axis, an objective lens for focussing the primary particle beam onto a specimen so as to release particles therefrom, and a detection system for image generation. The objective lens includes an immersion lens for decelerating the primary particle. The detection system includes a converter with a conversion area to convert the released accelerated particles into secondary particles, an electrode for influencing the converted secondary particles and at least one detector for detecting the converted secondary particles. The detection system is arranged in front of the immersion lens. The converter and the electrode control the converted secondary particles so as to prevent the converted secondary particles released at a specific part of the conversion area from reaching the detector.
Abstract:
This invention relates to an object observation apparatus and observation method. The object observation apparatus is characterized by including a drivable stage on which a sample is placed, an irradiation optical system which is arranged to face the sample on the stage, and emits an electron beam as a secondary beam, an electron detection device which is arranged to face the sample, causes to project, as a primary beam, at least one of a secondary electron, reflected electron, and back-scattering electron generated by the sample upon irradiation of the electron beam, and generates image information of the sample, a stage driving device which is adjacent to the stage to drive the stage, and a deflector arranged between the sample and the electron detection device to deflect the secondary beam, the electron detection device having a converter arranged on a detection surface to convert the secondary beam into light, an array image sensing unit which is adjacent to the converter, has pixels of a plurality of lines each including a plurality of pixels on the detection surface, sequentially transfers charges of pixels of each line generated upon reception of light of an optical image obtained via the converter to corresponding pixels of an adjacent line at a predetermined timing, adds, every transfer, charges generated upon reception of light after the transfer at the pixels which received the charges, and sequentially outputs charges added up to a line corresponding to an end, and a control unit connected to the array image sensing unit to output a transfer signal for sequentially transferring charges of pixels of each line to an adjacent line, and the control unit having a stage scanning mode in which the array image sensing unit is controlled in accordance with a variation in projection position of the secondary beam projected on the electron detection device that is generated by movement of the stage device, and a deflector operation mode in which the array image sensing unit is controlled in accordance with a variation in projection position of the secondary beam projected on the detection device by the deflector.
Abstract:
An SEM measurement standard for measuring linewidths of 0.1 microns and below utilizes two different conducting materials in order to prevent charging effects. The top material is selected to use grain morphology to focus secondary electrons, and to obtain improved image contrast. The inventive standard is comprised of materials which are commonly used in semiconductor manufacturing and which do not cause contamination of fabrication facilities.
Abstract:
A method for automatically recognizing a stage position of a feature of a semiconductor wafer comprises the steps of identifying a feature of a semiconductor wafer disposed at a predetermined distance from an alignment mark on the semiconductor wafer and obtaining an electron beam image, an optical image or a differential image thereof of the feature of the semiconductor wafer. A normalized correlation coefficient from the image of the feature is then calculated, and a stage position of the feature of the semiconductor wafer is automatically recognized in accordance with the normalized correlation coefficient.