摘要:
A method for manufacturing a magnetic recording medium disk substrate is provided for achieving a magnetic disk having a suitable surface roughness, a high in-plane magnetic anisotropy and a high S/N. The manufacturing method has a texturing process wherein the magnetic recording medium disk substrate is rotated in the circumferential direction while a polishing tape is pressed against the rotating substrate. The polishing tape includes polyester fiber having a fiber diameter of 400 nm to 950 nm, on the surface coming into contact with the substrate. All the while, slurry including abrasive grains including a cluster diamond is supplied to the surfaces of the substrate. The present invention relates to a magnetic recording medium disk substrate produced by the manufacturing method; and a magnetic recording medium at least comprising a magnetic layer on the magnetic recording medium disk substrate and manufacturing method of the magnetic recording medium.
摘要:
The present invention relates to a method of manufacturing a micro reactor device that includes a tubular reactor (1) as a flow path, for allowing reaction species to react in the reactor (1). The micro reactor device is manufactured by forming a particle layer (2) on an inner wall of the reactor (1). The particle layer (2) can be formed by causing a dispersion liquid of particles to flow through the reactor (1) and drying. In this way, it is possible to provide a method of manufacturing a micro reactor device having an inner wall modified so that the reaction species can react more efficiently, and to provide the micro reactor device.
摘要:
An acoustic wave device includes a piezoelectric substrate having a surface adapted to allow leaky surface wave to propagate thereon, an interdigital electrode provided on a portion of the surface of the piezoelectric substrate, and a dielectric layer provided on the surface of the piezoelectric substrate to cover the interdigital electrode. The piezoelectric substrate is made of lithium niobate. The dielectric layer is made of tantalum pentoxide. The piezoelectric substrate is made of a rotated Y-cut substrate having a cut angle which is not smaller than 2.5 degrees and is not larger than 22.5 degrees. A ratio H/λ of a film thickness H of the dielectric layer to a wavelength λ of a center frequency of the leaky surface wave ranges from 0.034 to 0.126. This acoustic wave device works in a wide band width.
摘要:
Disclosed is a method for manufacturing a resin pipe, including: heating a sheet member after winding the sheet member around a bar desired multiple times and holding the sheet member, wherein the sheet member is melted and molded into a resin pipe by the heating, and the bar is removed from the resin pipe after the heating.
摘要:
A piezoeletric resonator includes: a substrate; a lower electrode formed on or above the substrate; a piezoeletric body formed on or above the lower electrode; an upper electrode formed on or above the piezoeletric body; and a cavity under a vibrating portion formed by the lower electrode, the piezoeletric body, and the upper electrode. Where a resonant frequency of vibration with a thickness of the vibrating portion being a half of a wavelength is taken as fr, an average of ultrasonic velocity in a material forming the cavity is taken as Vc, and a value determined based on the resonant frequency fr and the average of ultrasonic velocity Vc is taken as λc (=Vc/fr), a depth of the cavity is set so as to be equal to or larger than n×λc/2−λc/8 and equal to or smaller than n×λc/2+λc/8.
摘要:
A piezoelectric filter which has a small circuit scale and device size and can reduce a loss, is provided. The piezoelectric filter (1) has an input impedance smaller than an output impedance. The piezoelectric filter (1) comprises an input terminal (101a), an output terminal (101b), series piezoelectric resonators (102a, 102b, 102c), and parallel piezoelectric resonators (103a, 103b, 103c). Among the parallel piezoelectric resonators (103a, 103b, 103c), on an equivalent circuit, a capacitance of a first parallel piezoelectric resonator (103a) close to the input terminal (101a) side is larger than a capacitance of a second parallel piezoelectric resonator (103c) close to the output terminal (101b) side.
摘要:
A binding device for horticulture for binding a tape by cutting and bending a tape overlapping part is provided.In the binding device, a blade (4) is attached to one of an arm (3) or a main body (2), and a blade receiver (5) is attached to the other of them facing with each other. The blade (4) and the blade receiver (5) form cutting to a tape overlapping part, and the blade (4) has a shape for cutting and bending the tape to form a locking to the inner end of the cut tape as well as the blade receiver (5) is formed to pull the cut tape out therefrom in an outer end direction, so that the tape can be maintained in a bound state by locking the tape itself.
摘要:
A wastewater treatment apparatus (10) that treats the wastewater containing persistent substances, according to the present invention, includes a wastewater treatment bath (12) for treating a wastewater (11), an oxidizing reagent adding unit (14) for adding an oxidizing reagent (13) in the wastewater treatment bath (12), and an alkaline reagent adding unit (16) for adding an alkaline reagent (15) in the wastewater treatment bath (12). By making the wastewater in the wastewater treatment bath (12) in the alkaline condition, it is possible to completely decompose the persistent substances in the wastewater by the oxidation treatment using an oxidizing reagent.
摘要:
An objective of the present invention is to provide a measuring chip for a surface plasmon resonance sensor that can detect a small amount of target substances in high sensitivity. The present invention provides a measuring chip for a surface plasmon resonance sensor comprising a metal layer, one or more plasma polymerization layers formed on said metal layer, and a biologically active substance immobilized on the surface of said plasma polymerization layer.
摘要:
An acoustic resonator device includes a substrate, a first acoustic resonator and a second acoustic resonator. The first acoustic resonator is formed on the substrate, and has a first upper electrode, a first piezoelectric layer, and a first lower electrode layer, and resonates in a λ/4 mode at a first resonant frequency. The second acoustic resonator is formed on the substrate, and has a second upper electrode layer, a second piezoelectric layer, and a second lower electrode layer, and resonates in a λ/2 mode at a second resonant frequency different from the first frequency. In the acoustic resonator device, materials and thicknesses of the first lower electrode layer and the second lower electrode layer are common and substantially equal, and materials and thicknesses of the first piezoelectric layer and the second piezoelectric layer are common and substantially equal.