Abstract:
A substrate processing apparatus is disclosed. Exemplary substrate processing apparatus includes a reaction chamber provided with a chamber wall; a susceptor disposed within the reaction chamber to support a substrate; a gas supply unit to supply a gas to the substrate; and an exhaust duct disposed within the reaction chamber, comprising: an inner ring comprising a first inner end and a second inner end; wherein the first inner end is configured to contact a bottom of the chamber wall; and an outer ring provided with a plurality of holes, the outer ring comprising a first outer end and a second outer end; wherein the first outer end is configured to contact a side of the chamber wall and the second outer end is configured to be engaged with the second inner end.
Abstract:
We describe vortical thin layer film flow along a spiral channel designed to improve mass and heat transfer efficiency for a multitude of physicochemical reactions and processes. Spiral channels, commonly augmented by centrifugal rotation, support rapid reaction between one or more fluids in a given channel. Dean vortices generate screw-shaped patterns processing axially in the channel, repeatedly refreshing radial interfaces. Fluids self-align, self-assemble, stable, controllable, exhibit thin film geometry. Multiple discrete lamellae can flow with independent velocity separated by density and may be soluble or insoluble in one another. Membranes separating spirals allow other interactions. Energy can be provided and extracted from each flow. Flows can enter or exit independently along the channel length. The pressure within each channel is controlled even when operated at the liquid's vapor pressure. The device is scalable to include a multiplicity of flows in a multiplicity of centrifugally rotating chambers.
Abstract:
A kit for installation on a top portion of a tank to treat a liquid that includes: (a) a pump volute or hydrocyclone head having an inlet and a throat having an outlet and a central axis, the outlet of the throat is installed on the top portion of the tank and the tank has a maximum inner diameter that is larger than an inner diameter of the outlet of the throat; and (b) a wave energy source having a first electrode within the pump volute or hydrocyclone head that is aligned with the throat along the central, and a second electrode that is installed within the tank such that the second electrode is spaced apart and axially aligned with first electrode along the central axis.
Abstract:
A method for producing a condensation polymerization reaction polymer, comprising a guide polymerization step in which a molten prepolymer is supplied to the top edge of a wire guide to obtain the condensation polymerization reaction polymer, the wire guide comprising a vertical wire group consisting of a plurality of vertical wires extending in the vertical direction, which are mutually spaced in alignment at an arrangement pitch L1 (mm). In the guide polymerization step, the molten prepolymer aggregates so that a molten prepolymer mass is formed on the vertical wire, and a molten prepolymer mass is formed wherein, the width of the molten prepolymer mass measured in an alignment direction of the vertical wires at a position 200 mm below the top edge being represented as L2 (mm), the width L2 of at least a portion of the molten prepolymer mass satisfies the inequality (1). L1
Abstract:
Disclosed is a process for continuously reacting liquid alkylene oxide with a liquid substance including an organic compound with active hydrogen atoms and a catalyst in a reactor.
Abstract:
A system for treating a substance using a storage vessel and two or more devices disposed in a top of the storage vessel. Each device has: (a) a volute or cyclone head, (b) a throat connected to the volute or cyclone head, (c) a parabolic reflector connected to the throat, (d) a first wave energy source comprising a first electrode within the volute or cyclone head that extends through the outlet into the opening of the throat along the central axis, and a second electrode extending into the parabolic reflector and spaced apart and axially aligned with first electrode, and (e) a second wave energy source disposed inside the throat, embedded within the throat or disposed around the throat. The substance is supplied to the inlet of the volute or cyclone head and is irradiated with one or more wave energies produced by the first and second wave energy sources.
Abstract:
A method for treating a substance using an apparatus having: (a) a volute or cyclone head, (b) a throat connected to the volute or cyclone head, (c) a parabolic reflector connected to the throat, (d) a first wave energy source comprising a first electrode within the volute or cyclone head that extends through the outlet into the first opening of the throat along the central axis of the throat, and a second electrode extending into the parabolic reflector proximate to the focus wherein the second electrode is spaced apart and axially aligned with first electrode, and (e) a second wave energy source disposed inside the throat, embedded within the throat or disposed around the throat. The substance is supplied to the inlet of the volute or cyclone head and is irradiated with one or more wave energies produced by the first and second wave energy sources.
Abstract:
Disclosed is a process for continuously reacting liquid alkylene oxide with a liquid substance including an organic compound with active hydrogen atoms and a catalyst in a reactor.
Abstract:
An apparatus for treating a liquid includes: (a) a pump volute or hydrocyclone head having an inlet and a throat having an outlet and a central axis, (b) a tank connected to the outlet of the throat, wherein the tank has a maximum inner diameter that is larger than an inner diameter of the outlet of the throat, and (c) a wave energy source having a first electrode within the pump volute or hydrocyclone head that extends through the outlet of the throat along the central axis, and a second electrode within the tank that is spaced apart and axially aligned with first electrode along the central axis. The liquid is supplied to the inlet of the pump volute or hydrocyclone head, and is irradiated with one or more wave energies produced by the wave energy source.
Abstract:
A method for treating a liquid using an apparatus includes: (a) a pump volute or hydrocyclone head having an inlet and an outlet, (b) a throat having a first opening, a second opening and a central axis, wherein the first opening is connected to the outlet of the pump volute or hydrocyclone head, (c) a tank connected to the second opening of the throat, and (d) a wave energy source having a first electrode within the pump volute or hydrocyclone head that extends through the outlet into the first opening of the throat along the central axis of the throat, and a second electrode within the tank that is spaced apart and axially aligned with first electrode. The method includes the steps of providing the above-described apparatus, supplying the liquid to the inlet of the pump volute or hydrocyclone head, and irradiating the liquid with one or more wave energies produced by the wave energy source.