Abstract:
A disc drive implementing a dual-stage actuation system having an improved scheme for electrically interconnecting a transducing head to a flexure includes a support structure supporting a slider in proximity to a surface of a rotatable disc. The support structure is coarsely positionable by a main actuator. A microactuator is also provided, including a stator attached to the support structure and a rotor operatively attached to the slider. The rotor is connected to the stator by at least one flexible beam. A first electrical interconnect is formed between the support structure and the stator of the microactuator. A conductive trace is formed on the flexible beam between the stator and the rotor of the microactuator. A second electrical interconnect is formed between the rotor of the microactuator and at least one bond pad on the slider electrically connected to the transducing head.
Abstract:
A force, weight or position sensor unit and sensor element in a first embodiment. In a second embodiment, the sensor element of the first embodiment is incorporated into an apparatus for microindentation hardness testing and surface imaging which allows immediate imaging of the surface subsequent to hardness testing. The sensor uses a multi-capacitor system having drive and pick-up plates mounted on an appropriate suspension system to provide the desired relative motion when a force is applied to the pick-up plate. The output signal is run through a buffer amplifier and synchronously demodulated to produce a signal proportional to force or displacement. The sensor element is mounted on a scanning tunneling microscope base and a sample mounted on the sensor. The force sensor is used for both measuring the applied force during microindentation or micro hardness testing and for imaging before and after the testing to achieve an atomic force microscope type image of the surface topography before and after indentation testing.
Abstract:
A capacitive accelerometer system for detecting changes in G-forces and for producing a digital count value proportional to such changes. An oscillator-driven capacitive transducer of a unique design produces a voltage variation whose amplitude and frequency characteristics are a function of the direction and magnitude of the applied G-forces. The transducer itself comprises a pair of spaced-apart parallel plates disposed on opposite sides of a beam-supported movable plate which responds to changes in acceleration forces. The modulated signal is then demodulated and applied by a semiconductor switch actuated by a pulse from a microprocessor to a voltage-controlled current source. The current source varies the discharge rate of a precision capacitor. When the voltage on the capacitor drops to a predetermined threshold, an interrupt signal is presented to the microprocessor which had been counting one microsecond pulses from its internal clock during the period between the actuation of the semiconductor switch and the generation of the interrupt. The count is then inversely proportional to the shift in capacitance of the transducer which, in turn, is proportional to the G-forces applied to it.
Abstract:
A hybrid read/write head for use with a perpendicular recording medium is a laminate of prefabricated members having thin film magnetic layers as the read/write and tunnel erase pole tips.