摘要:
A pipelined instruction dispatch or grouping circuit allows instruction dispatch decisions to be made over multiple processor cycles. In one embodiment, the grouping circuit performs resource allocation and data dependency checks on an instruction group, based on a state vector which includes representation of source and destination registers of instructions within said instruction group and corresponding state vectors for instruction groups of a number of preceding processor cycles.
摘要:
One embodiment of the present invention provides a system that supports executing a fail instruction, which terminates transactional execution of a block of instructions. During operation, the system facilitates transactional execution of a block of instructions within a program, wherein changes made during the transactional execution are not committed to the architectural state of the processor until the transactional execution successfully completes. If a fail instruction is encountered during this transactional execution, the system terminates the transactional execution without committing results of the transactional execution to the architectural state of the processor.
摘要:
One embodiment of the present invention provides a system that synchronizes threads on a multi-threaded processor. The system starts by executing instructions from a multi-threaded program using a first thread and a second thread. When the first thread reaches a predetermined location in the multi-threaded program, the first thread executes a Start-Transactional-Execution (STE) instruction to commence transactional execution, wherein the STE instruction specifies a location to branch to if transactional execution fails. During the subsequent transactional execution, the first thread accesses a mailbox location in memory (which is also accessible by the second thread) and then executes instructions that cause the first thread to wait. When the second thread reaches a second predetermined location in the multi-threaded program, the second thread signals the first thread by accessing the mailbox location, which causes the transactional execution of the first thread to fail, thereby causing the first thread to resume non-transactional execution from the location specified in the STE instruction. In this way, the second thread can signal to the first thread without the first thread having to poll a shared variable.
摘要:
A technique for operating a computing apparatus includes allocating a working register file entry corresponding to a register in a working register file when an instruction referencing the register proceeds through a particular stage of the computing apparatus. The technique maintains the working register file entry until at least a predetermined number of subsequent instructions have similarly proceeded through the particular stage.
摘要:
One embodiment of the present invention provides a system that enforces memory-reference ordering requirements at an L2 cache. During operation, the system receives a load at the L2 cache, wherein the load previously caused a miss at an L1 cache. Upon receiving the load, the system performs a lookup for the load in reflections of store buffers associated with other L1 caches. These reflections are located at the L2 cache, and each reflection contains addresses for stores in a corresponding store buffer associated with an L1 cache, and possibly contains data that was overwritten by the stores. If the lookup generates a hit, which indicates that the load may potentially interfere with a store, the system causes the load to wait to execute until the store commits.
摘要:
One embodiment of the present invention provides a system which supports out-of-order issue in a processor that normally executes instructions in-order. The system starts by issuing instructions from an issue queue in program order during a normal-execution mode. While issuing the instructions, the system determines if any instruction in the issue queue has an unresolved short-latency data dependency which depends on a short-latency operation. If so, the system generates a checkpoint and enters an out-of-order-issue mode, wherein instructions in the issue queue with unresolved short-latency data dependencies are held and not issued, and wherein other instructions in the issue queue without unresolved data dependencies are allowed to issue out-of-order.
摘要:
A processor reduces wasted cycle time resulting from stalling and idling, and increases the proportion of execution time, by supporting and implementing both vertical multithreading and horizontal multithreading. Vertical multithreading permits overlapping or “hiding” of cache miss wait times. In vertical multithreading, multiple hardware threads share the same processor pipeline. A hardware thread is typically a process, a lightweight process, a native thread, or the like in an operating system that supports multithreading. Horizontal multithreading increases parallelism within the processor circuit structure, for example within a single integrated circuit die that makes up a single-chip processor. To further increase system parallelism in some processor embodiments, multiple processor cores are formed in a single die. Advances in on-chip multiprocessor horizontal threading are gained as processor core sizes are reduced through technological advancements.
摘要:
Explicit software control is used for data speculations. The explicit software control is applied at selected locations in a computer program to provide the benefit of data speculation while eliminating the need for hardware to perform data speculation. A computer-based method first determines, via explicit software control, whether data speculation for an item, a variable, a pointer, an address, etc., is needed. Upon determining that data speculation for the item is needed, the data speculation is performed under explicit software control. Conversely, if the explicit software control determines that data speculation is not needed, e.g., the value of the item typically obtained by execution of a long latency instruction, is available, an original code segment is executed using an actual value of the item.
摘要:
A processor executes an instruction set including instructions in which a register specifier is implicitly derived, based on another register specifier. One technique for implicitly deriving a register specifier is to add or subtract one from a specifically-defined register specifier. Implicit derivation of a register specifier is selectively implemented for some opcodes. A decoder decodes instructions that use implicitly-derived register specifiers and reads the explicitly-defined register. The decoder generates pointers both to the explicitly-defined register and to the implicitly-derived register. In other embodiments, a pointer to registers within a register file includes an additional bit indicating that a register read is accompanied by a read of an implicitly-derived register.
摘要:
One embodiment of the present invention provides a system that facilitates deferring execution of instructions with unresolved data dependencies as they are issued for execution in program order. During a normal execution mode, the system issues instructions for execution in program order. Upon encountering an unresolved data dependency during execution of an instruction, the system generates a checkpoint that can subsequently be used to return execution of the program to the point of the instruction. Next, the system executes subsequent instructions in an execute-ahead mode, wherein instructions that cannot be executed because of an unresolved data dependency are deferred, and wherein other non-deferred instructions are executed in program order.