Abstract:
A cold pressure fix toner composition includes at least one C16 to C80 crystalline organic material having a melting point in a range from about 30° C. to about 130° C. and at least one C16 to C80 amorphous organic material having a Tg of from about −30° C. to about 70° C. A method of cold pressure fix toner application includes providing the cold pressure fix toner composition, disposing the cold pressure fix toner composition on a substrate and applying pressure to the disposed composition on the substrate under cold pressure fixing conditions. The cold pressure fix toner compositions can be formed into latexes.
Abstract:
A fuser comprises a substrate and a composite layer formed on the substrate. The composite layer comprises a plurality of fluorosilane-treated graphene-comprising particles and a fluoropolymer. Methods of making a fuser and methods of fusing toner particles are also disclosed.
Abstract:
Described herein is a method and apparatus for ink jet printing. The method includes providing a wetting enhancement coating on a transfer member. The wetting enhancement coating (WEC) includes water, an acid treated, waxy maize cationic starch, a humectant and a surfactant. The wetting enhancement coating is dried or semi-dried to form a film. Ink droplets are ejected onto the film to form an ink image on the film. The ink image is dried and the ink image and film are transferred to a recording medium.
Abstract:
There is provided a homogenous composite dispersion. The composite dispersion is made from ingredients comprising: a first dispersion comprising a filler dispersed in a liquid continuous phase, the filler selected from the group consisting of nanotubes, graphene or a combination thereof, the liquid continuous phase comprising an acid copolymer and a first solvent, the acid copolymer comprising at least one carboxyl functionalized polymeric unit and at least one carboxylate ester functionalized polymeric unit having an alkyl or fluorinated alkyl attached to an oxygen atom of the carboxylate ester; a second dispersion comprising a fluoroplastic dispersed in a second solvent; and a sacrificial polymeric binder material.
Abstract:
Described is provided a composition of matter that includes a layer having a metal coated non-woven polymer fiber mesh. The metal coated non-woven polymer fiber mesh has pores of a size of from about 1 micron to about 50 microns, and a fluoropolymer dispersed on and throughout the metal coated non-woven polymer fiber mesh. A method of manufacturing is also provided.
Abstract:
A method of manufacturing a fuser member is described. The method includes obtaining a substrate and coating a composition of an anhydride capped polyamic acid oligomer, a multi-amine and a solvent on the substrate to form a polyimide gel layer on the substrate. The solvent is extracted from the polyimide gel layer with an extraction solvent. The extraction solvent is removed to form a polyimide aerogel layer having a porosity of from about 50 percent to about 95 percent. A fluoropolymer is coated on the polyimide aerogel layer and cured or melted to form a release layer.
Abstract:
A fuser comprises a substrate and a composite layer formed on the substrate. The composite layer comprises a plurality of fluorosilane-treated graphene-comprising particles and a fluoropolymer. Methods of making a fuser and methods of fusing toner particles are also disclosed.
Abstract:
A dielectric layer for an electronic device, such as a thin-film transistor, is provided. The dielectric layer comprises a molecular glass. The resulting dielectric layer is very thin, pure, and stable. Processes and compositions for fabricating such a dielectric layer are also disclosed.
Abstract:
There is described an image forming apparatus that includes an imaging member having a charge retentive-surface for developing an electrostatic latent image thereon. The imaging member includes a substrate and photoconductive member disposed on the substrate. The image forming apparatus includes a charging unit for applying an electrostatic charge on the imaging member to a predetermined electric potential wherein the charging unit is spaced from the photoconductive member a distance of from about 3 μm to about 300 μm. The image forming apparatus includes a delivery member in contact with the surface of the photoconductive member. The delivery member includes an elastomeric matrix impregnated with a liquid lubricant wherein the delivery member applies a layer of liquid lubricant to the surface of the photoconductor wherein in the layer has a thickness of from about 1 nm to about 15 nm during steady state operation.
Abstract:
A method and apparatus for displaying a reflective image in response to light emitted from an emissive display is disclosed. An apparatus includes an emissive display, a processor in communication with the emissive display, and an electronic cover proximate to the emissive display. The electronic cover includes a passive display layer having a plurality of passive display elements and a photosensitive layer responsive to emitted light from the emissive display. A method includes forming an emitted light image on the emissive display and exposing the photoconductor layer of the electronic cover to an emitted light image, causing the plurality of passive display elements to form a reflective image on the passive display layer so that the reflective image corresponds to the displayed image.