摘要:
A semiconductor device is provided, which includes a first insulating layer over a first substrate, a transistor over the first insulating layer, a second insulating layer over the transistor, a first conductive layer connected to a source region or a drain region of the transistor through an opening provided in the second insulating layer, a third insulating layer over the first conductive layer, and a second substrate over the third insulating layer. The transistor comprises a semiconductor layer, a second conductive layer, and a fourth insulating layer provided between the semiconductor layer and the second conductive layer. One or plural layers selected from the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer have a step portion which is provided so as not to overlap with the transistor.
摘要:
An object of the prevent invention is to provide a semiconductor device having a conductive film, which sufficiently serves as an antenna, and a method for manufacturing thereof. The semiconductor device has an element formation layer including a transistor, which is provided over a substrate, an insulating film provided on the element formation layer, and a conductive film serving as an antenna, which is provided on the insulating film. The insulating film has a groove. The conductive film is provided along the surface of the insulating film and the groove. The groove of the insulating film may be provided to pass through the insulating film. Alternatively, a concave portion may be provided in the insulating film so as not to pass through the insulating film. A structure of the groove is not particularly limited, and for example, the groove can be provided to have a tapered shape, etc.
摘要:
The present invention is to solve the problems of heat release and a metal material corrosion due to fluorine that are arisen in the case of using a film containing fluoroplastics (Teflon®) as a protective film for a light-emitting device. In the present invention, an inorganic film is formed after forming a light-emitting device, and a film containing fluoroplastics is formed thereon for avoiding contact with a metal material for forming the light-emitting device, as a result, a metal material corrosion due to fluorine in the film containing fluoroplastics can be prevented. In addition, the inorganic insulating film has a function of preventing fluorine in the film containing fluoroplastics from reacting to the metal material (barrier property), in addition, the inorganic insulating film is formed of a material having high heat conductivity for releasing heat generated in a light-emitting device.
摘要:
To provide a thin film integrated circuit at low cost and with thin thickness, which is applicable to mass production unlike the conventional glass substrate or the single crystalline silicon substrate, and a structure and a process of a thin film integrated circuit device or an IC chip having the thin film integrated circuit. A manufacturing method of a semiconductor device includes the steps of forming a first insulating film over one surface of a silicon substrate, forming a layer having at least two thin film integrated circuits over the first insulating film, forming a resin layer so as to cover the layer having the thin film integrated circuit, forming a film so as to cover the resin layer, grinding a backside of one surface of the silicon substrate which is formed with the layer having the thin film integrated circuit, and polishing the ground surface of the silicon substrate.
摘要:
It is an object of the invention to provide a peeling method which does not damage a peeling layer, and to perform peeling not only a peeling layer having a small-size area but also an entire peeling layer having a large-size area with a preferable yield. In the invention, after pasting a fixing substrate, a part of a glass substrate is removed by scribing or performing laser irradiation on the glass substrate which leads to providing a trigger. Then, peeling is performed with a preferable yield by performing peeling from the removed part. In addition, a crack is prevented by covering the entire face except for a connection portion of a terminal electrode (including a periphery region of the terminal electrode) with a resin.
摘要:
One embodiment of the present invention is a film forming method comprising: arranging a surface of a film formation substrate 10 including an absorption layer 12 on a first substrate 11 and a material layer 13 containing a film formation material and a surface of a film-formation target substrate 20 including a first layer 23 over a second substrate 22, so as to face each other; forming a second layer 13a containing the film formation material over the first layer 23 by performing first heat treatment on the material layer 13; and forming a third layer 13b containing the film formation material over the second layer 13a by performing second heat treatment on the material layer 13. In the second heat treatment, energy with a density higher than that in the first heat treatment is applied to the material layer.
摘要:
An evaporation donor substrate which enables only a desired evaporation material to be evaporated at the time of deposition by an evaporation method, and capable of reduction in manufacturing cost by increase in use efficiency of the evaporation material and deposition with high uniformity. An evaporation donor substrate capable of controlling laser light so that a desired position of an evaporation donor substrate is irradiated with the laser light in accordance with the wavelength of the emitted laser light at the time of evaporation. Specifically, an evaporation donor substrate in which a region which reflects laser light and a region which absorbs laser light at the time of irradiation with laser light having a wavelength of greater than or equal to 400 nm and less than or equal to 600 nm at the time of evaporation are formed.
摘要:
The present invention provides an antenna in that the adhesive intensity of a conductive body formed on a base film is increased, and a semiconductor device including the antenna. The invention further provides a semiconductor device with high reliability that is formed by attaching an element formation layer and an antenna, wherein the element formation layer is not damaged due to a structure of the antenna. The semiconductor device includes the element formation layer provided over a substrate and the antenna provided over the element formation layer. The element formation layer and the antenna are electrically connected. The antenna has a base film and a conductive body, wherein at least a part of the conductive body is embedded in the base film. As a method for embedding the conductive body in the base film, a depression is formed in the base film and the conductive body is formed therein.
摘要:
A semiconductor device is provided, which includes a first insulating layer over a first substrate, a transistor over the first insulating layer, a second insulating layer over the transistor, a first conductive layer connected to a source region or a drain region of the transistor through an opening provided in the second insulating layer, a third insulating layer over the first conductive layer, and a second substrate over the third insulating layer. The transistor comprises a semiconductor layer, a second conductive layer, and a fourth insulating layer provided between the semiconductor layer and the second conductive layer. One or plural layers selected from the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer have a step portion which is provided so as not to overlap with the transistor.
摘要:
First semiconductor integrated circuits and second semiconductor integrated circuits arranged over a first substrate so that each of the second semiconductor integrated circuits is adjacent to one of the first semiconductor integrated circuits are transferred to additional substrates through multiple transfer operations. After the first semiconductor integrated circuits and the second semiconductor integrated circuits formed over the first substrate are transferred to the additional substrates (a fourth substrate and a fifth substrate) respectively, the circuits are divided into a semiconductor device corresponding to each semiconductor integrated circuit. The first semiconductor integrated circuits are arranged while keeping a distance from each other over the fourth substrate, and the second semiconductor integrated circuits are arranged while keeping a distance from each other over the fifth substrate. Thus, a large division margin of each of the fourth substrate and the fifth substrate can be obtained.