Abstract:
A vehicle includes sidewalls, a tailgate located proximate to rear ends of the sidewalls, and a tailgate energy management system. The tailgate energy management system includes a governor coupled to one of the sidewalls and to the tailgate. The governor selectively applies a governing force to the tailgate to reduce an opening speed of the tailgate. The tailgate energy management system also includes a speed sensor sensing an opening speed of the tailgate and an electronic control unit electronically coupled to the governor and the speed sensor. The electronic control unit includes a processor and memory storing an instruction set. The electronic control unit receives a speed signal indicative of the opening speed of the tailgate and the processor executes the instruction set to cause the electronic control unit to transmit a control signal to the governor to slow the opening speed of the tailgate based on the speed signal.
Abstract:
The invention relates to a damping device for movable furniture part, comprising:—a damper housing,—a fluid chamber which is arranged in the damper housing and in which a piston is movably mounted,—a tappet which is connected to the piston, at least one seal being arranged between the damper housing and the tappet in order to seal the fluid chamber, wherein the tappet passes through the seal,—a compensating chamber which is fluidically connected to the fluid chamber, which runs laterally parallel to the fluid chamber, and in which at least one deformable compensating body is arranged in order to compensate for a volume change due to the tappet being immersed into the fluid chamber, said deformable compensating body and the at least one seal being designed together as a single piece.
Abstract:
An item of furniture includes a furniture body, a furniture part which is displaceably received in or on the furniture body, and an ejection device having at least one ejection element for displacing the movable furniture part from a closed position into a first open position. At least one lockable drive device is provided for driving the at least one ejection element. A means is provided for displacing the at least one ejection element beyond the first open position.
Abstract:
A toggle type hinge (10) has a damper assembly mounted on the flange (12) of its hinge cup. The damper assembly provides a damping resistance to the closing movement of the hinge over its final stage. The damper assembly includes: a sleeve (21) which houses a linear damper. The sleeve (21) is mounted on a groove (26) on the hinge cup flange (12) and is held in position by a holder (15). A wing (22) on the sleeve (21) is arranged to come into engagement with an arm (11) of the hinge, causing the sleeve to rotate about its longitudinal axis (25). A cam arrangement (19, 23) between the hinge cup flange (12) and the sleeve (21) causes the sleeve to move along its axis (25) as it rotates. The axial movement of the sleeve (21) causes compression of the damper.
Abstract:
A locking device for locking a displaceable motor vehicle part which is lockable by the means of the locking device within a displacement range in a respective rest position reached by displacement is provided. The locking device comprising a braking device with at least two braking elements which interacts in a braking manner in a respective rest position of the motor vehicle part in order to lock the motor vehicle part. An actuator is assigned to the locking device, which is optionally combinable with the braking device and with which a displacement movement of the motor vehicle part is brakable for locking the motor vehicle part. The actuator is operatively connected independently on the braking device with a component which can be moved by displacement of a motor vehicle part so that a displacement movement of the displaceable motor vehicle part is brakable by the action of an actuator on the component.
Abstract:
A hinge assembly is provided for pivotably attaching a door to a domestic appliance. The hinge assembly includes a hinge body having two side walls; a damper; a foot pivotably attached to the damper, the foot being configured to engage a foot receiving portion of the appliance body such that the hinge body and the door pivot relative to the appliance body; a pivot member that locationally fixes an eyelet of the damper to the hinge body; and two spacer bushings located on opposite sides of the eyelet and between the eyelet and the side walls of the hinge body. The pivot member extends through the side walls, the spacer bushings and the eyelet.
Abstract:
A sliding door with a door leaf, which is suspended from at least one carriage and guided to be displaceable along a roller rail profile disposed at a wall or at a ceiling. The sliding door includes a closing device, which is suitable to displace the door leaf into a closed position in a decelerated manner. The closing device is disposed at the door leaf and includes a first and a second spring-damper element, which are disposed to be counter-directional to each other. The second spring-damper element is suitable to displace the door leaf into an open position in a decelerated manner.
Abstract:
A tailgate damping system for controlling movement of a tailgate assembly of a vehicle includes a speed sensor that provides rotational speed information of the tailgate assembly. A controller receives the rotational speed information from the speed sensor. A damping control assembly receives a tailgate shaft of the tailgate assembly. The damping control assembly includes a housing comprising a rotor chamber including a rotor member located therein. The rotor member is connected to a rotor shaft that is coupled to the tailgate shaft. A valve chamber includes a control valve located therein. The controller closes the control valve to inhibit exit of a damping fluid from the rotor chamber based on the speed information received from the speed sensor.
Abstract:
An adjustable torque hinge includes a set hinge, a torque providing unit and a torque adjusting unit. The set hinge unit couples a first and second wing plate with a pivot pin. The first and second wing plates forms a pin joint with a first sleeve and second sleeve. The torque providing unit includes a torque spring to provide turn back recovery. A torque adjusting unit has a torque adjustment member. The first sleeve includes a first cam, and the torque adjustment member includes a second cam which couples with the first cam to drive the torque adjustment member to the torque spring. Conversion between the first and second sleeves enables the bearing hinge to be used in both directions, accumulating force both in normal and reverse directions to adjust the torque force for opening and closing operations.
Abstract:
A tailgate damping system for controlling movement of a tailgate assembly of a vehicle includes a speed sensor that provides rotational speed information of the tailgate assembly. A controller receives the rotational speed information from the speed sensor. A damping control assembly receives a tailgate shaft of the tailgate assembly. The damping control assembly includes a housing comprising a rotor chamber including a rotor member located therein. The rotor member is connected to a rotor shaft that is coupled to the tailgate shaft. A valve chamber includes a control valve located therein. The controller closes the control valve to inhibit exit of a damping fluid from the rotor chamber based on the speed information received from the speed sensor.