Abstract:
Security scanning devices based on electrical tomography, including tomography systems based on the measurement of capacitance (ECT) and electromagnetic tomography (EMT), in combination with knowledge-based image analysis and understanding. Each device includes a sensing head or transducer, sensing electronics, image reconstruction and image analysis microprocessor, a display unit and accompanying software for identifying dangerous materials and items. The security scanning devices are employed for obtaining multiple independent measurements and enable implementation of data fusion to combine the complementary sensitivity of ECT and EMT to different material properties, while providing architecture to implement image knowledge bases, which characterize objects, whose image attributes are acquired from multiple sensors.
Abstract:
A circuit which includes the addition of test points and analog circuitry required to perform a four-point measurement technique. Test points are fed to an analog multiplexer which is under control of test logic added to the design to facilitate the testing. The output of the analog multiplexer is fed directly to an n-bit Analog-to-Digital Converter (ADC), when the number of bits is determined by the measurement resolution required for the circuit to be tested. The ADC is controlled by digital test logic instantiated in the design to perform the BIST operation. A known current is injected and held constant during the entire BIST operation, and the BIST logic performs voltage measurements. The voltage differential is compared by the BIST circuitry based on the values obtained from the ADC. Then, a pass/fail bit can be passed to a signal pin on the device to be compared by the ATE.
Abstract:
A probe for surface-resistivity measurement is provided in a surface-resistivity measuring apparatus for measuring a surface resistivity of a target. The probe includes an electrode and a contact portion. The contact portion has a specific resistance larger than the electrode. The contact portion is disposed on the electrode. The contact portion is capable of surface-contact with the target.
Abstract:
A circuit for measuring the frequency difference between a reference clock and a second clock. The circuit presents a first output in response to a phase crossing between the two clocks. A second circuit presents a second output in response to the first output and the reference clock.
Abstract:
A method of use and system for determining the longitudinal active resistance of a neutral conductor of an underground electrical cable, while the electrical cable remains in service. The method is conducted by applying a selective frequency test current signal to the neutral conductor of the underground cable connected between a pair of grounded structures, e.g., power transformers, from a test signal generator that is connected across the neutral conductor using first and second bifilar winding signal-voltage cables. The method utilizes indirect voltage determination to obtain the voltage drop across the neutral conductor while mitigating induced voltage effects which occur when direct voltage measurement is used. A plurality of selective frequency test current signals are used to obtain a plurality of longitudinal active resistance values. Any conventional extrapolation method is then used to obtain a longitudinal active resistance value at 0 Hz. A further enhancement to this method of use and system is addition of a current balance test and a current partition test. The current balance test determines the ratio of the test current in/out of neutral conductor under test, thereby providing an indication of the electrical continuity or breaks of the neutral conductor. The current partition test determines the ratio of the test current in the neutral conductor to the generator test current, thereby providing a relative indication of the amount of test current actually passing through the neutral conductor under test.
Abstract:
A measuring circuit obtains desired characteristic values of a device under test by accurately measuring a voltage and a current. Errors are eliminated that originate from the transmission characteristics of cables used in measurements at high frequencies and measurements using long cables. The errors are eliminated by connecting resistors that are equal in resistance to the characteristic impedance of cables, to the inputs of the cables which connect the device under test to a measuring device.
Abstract:
A method for measuring the resistance or conductivity between two or more conductors which are placed against a semiconductor element, wherein in order to bring the contact resistance between the conductors and the element to, to hold it at,a predetermined value during measuring, the conductors are held at a constant distance and/or under constant pressure relative to the semiconductor element.
Abstract:
This invention relates to an apparatus and method for measuring the resistance of superconductors. Structures of this type, generally, allow the resistance of the superconductor to be accurately measured in a non-destructive manner by using a bifilar coil which includes an integrated loop/switch formed from the bifilar coil.
Abstract:
A sense amplifier is provided for sensing an impedance between two lines. The impedance has two levels. The two lines are, in one embodiment, a product term line and a product term ground line of a programmable logic device. In the amplifier, a pull-up circuit connects one of the two lines to a high voltage (for example, V.sub.DD =5 volts), and a pull-down circuit connects the other line to a low voltage (for example, ground). A negative feedback circuit controls the pull-up and pull-down circuits in response to the voltage on one of the two lines so that the impedance of the pull-up circuit changes in direct relationship with respect to the voltage of that line, and the impedance of the pull-down circuit changes in an inverse relationship with respect to that voltage. The feedback circuit has a delay at least as long as the transition of that voltage between its two values, which values correspond to the two impedance levels. The delay permits to increase the transition speed in a power-efficient manner. The delay can be implemented by simple circuitry. The pull-down circuit includes, in some embodiments, two electrical paths structured so as to make the amplifier more tolerant to temperature and process variations.
Abstract:
In an acceleration sensor, in particular for automobiles, at least two electrodes which are surrounded by a dielectric are arranged, substantially parallel to each other, in a housing and immersed over part of their length in an electrically conductive liquid. Flip-flops output pulses having durations based on capacitance of the sensor. Output signals of the flip-flops are combined arithmetically.