Abstract:
A system includes a sensor configured to detect an electrical leakage current associated with an operation of an industrial machine. The sensor includes a core and a first winding encircling a first portion of the core. The first winding includes a first number of turns. The first winding is configured to obtain a set of electrical current measurements associated with the operation of the industrial machine. The sensor includes a second winding encircling a second portion of the core. The second winding includes a second number of turns. The second winding is configured to obtain the set of electrical current measurements associated with the operation of the industrial machine. The first winding and the second winding are each configured to generate respective outputs based on the set of electrical current measurements. The respective outputs are configured to be used to reduce the occurrence of a distortion of the set of electrical current measurements based on a temperature of the core.
Abstract:
An abnormality occurring in a ZCT is detected simply and reliably. A zero-phase-sequence current transformer (ZCT) (11) detects zero-phase-sequence current in power wires inserted therethrough, and in addition to the power wires, has inserted therethrough a wire through which a constant DC offset current flows.
Abstract:
The present invention relates to a unit current transformer device and a magnetic induction power supplying device, and particularly to a magnetic induction power supply unit capable of linearly adjusting output power according to the number of unit current transformer devices configured to have a specific resonance frequency. To this end, the unit current transformer device includes a current transformer inducing secondary current from primary current flowing through a line in a magnetic induction manner and having a resonant frequency double or greater than that of the primary current, and a converting unit converting an output of the current transformer to DC power.
Abstract:
A circuit for sampling current includes a current transformer, a reset resistor, a diode, a sampling switch, and a current sampling resistor. The current transformer includes a primary winding and a secondary winding. The reset resistor and two ends of the secondary winding are connected in parallel. The sampling switch, the diode, and the current sampling resistor are connected in series and then connected to two ends of the reset resistor in parallel. The primary winding is for connecting to a circuit to be sampled. When a current flows through the primary winding and the circuit to be sampled and the sampling switch is turned on at a negative AC half cycle, the circuit for sampling current samples the current flowing through the circuit to be sampled.
Abstract:
A device and a method for demounting a magnetic permeable core mounted around an electric conductor carrying electric current, the device including the core including at least two parts closed around the electric conductor, a secondary coil of electric wire wrapped around at least one part of the core, the coil having two terminals, each at one end of the coil, and a switch, electrically coupled to the two terminals, the switch being operative, when closed, to maintain a short circuit of the coil upon demand, where mounting the device on the electric conductor includes closing the two parts of the core to around the electric conductor while the switch is open, and where demounting the device from the electric conductor includes closing the switch to disengage the two parts of the core.
Abstract:
This current measurement device includes a conductor, a first terminal block, a pair of detection coils and a current calculator. A magnetic field, proportional to the magnitude of a conducted to-be-measured current, is generated around the conductor. The first terminal block has a placement surface on which the conductor is disposed. The pair of detection coils has the configuration, connected in series and in opposite polarities, and disposed on the placement surface of the first terminal block such that the conductor is between the pair of detection coils, and each coil is spaced from the conductor by an insulating distance. The detection coils output an inductive voltage signal produced by the magnetic field generated by the conductor and an external magnetic field which is magnetic noise. A current calculator calculates the value of the to-be-measured current on the basis of the inductive voltage signals from the pair of detection coils.
Abstract:
A sensor device for use in detecting current in a conductor is provided. The sensor includes a non-magnetic substrate defining an aperture structured to receive a conductor therein, a coil comprising a plurality of turns wound about at least a portion of the substrate, and a housing for enclosing the substrate and coil. The housing includes a dielectric material having a dielectric constant and positioned adjacent to the coil and at least partially within the aperture such that the dielectric material is disposed between the coil and the conductor when the conductor is received through the aperture and at least one spacer coupled to the aperture to facilitate maintaining a position of the coil relative to the conductor, wherein each of the spacers is positioned offset from the dielectric material such that each of the spacers does not radially extend between the coil and the conductor.
Abstract:
A method for processing output from a current transformer comprising deriving signal data from the output; converting the signal data from analog to digital format; removing a carrier signal from the signal data; squaring the signal data; and performing a recursive RMS algorithm on the signal data.
Abstract:
Disclosed is an electromagnetic induction type power supply device, which generates electric power through an electromagnetic induction method using a transformer from current flowing through a transmission line, can adjust an output thereof by detecting and feeding back the output, enables a transformer and a power converting unit to be added or removed as necessary. The electromagnetic induction type power supply device includes a transformer module including a plurality of transformers for outputting electric power by inducing, in an electromagnetic induction method, secondary current from primary current flowing through a transmission line; a power source module including a plurality of power converting units for converting the electric power output from the plurality of transformers to direct current power and outputting the converted power; and a power summing unit for summing the direct current power output from the plurality of transformers and providing the summed power to a load.
Abstract:
A system and method for tuning a transformer is provided. A transformer fixture may connect a switching network to a plurality of inductors of a transformer. At least one computing device may calculate a target number of turns for a primary coil and a secondary coil of the transformer based on a frequency response of the transformer. The switching network may connect the inductors of the transformer together in a pattern that results in the primary coil and secondary coil having the target number of turns.