Abstract:
The present invention relates to a new catalyst based on allyl complexes of the rare earths, of general formula [(C3R15)rM1(X)2−r(D)n]+[M2(X)p(C6H5−qR2q)4−p]− (I), to the preparation of this new catalyst, and to its use for the polymerization of unsaturated compounds, particularly of conjugated dienes, in solution and in the gas phase.
Abstract:
The invention relates to a process for the preparation of supported polymerization catalyst systems comprising the steps of: a) dissolving at least one different transition metal complex in a mixture of at least two different solvents having different boiling points to form a solution, b) contacting said solution with at least one different support material, the volume of the solution being sufficient to form a slurry with the support material, the volume of the higher-boiling solvent being less than or equal to the total pore volume of the support, c) removing more than 90% of the solvent boiling at the lower temperature, and d) adding at least one co-catalyst.
Abstract:
An accelerator for cyanoacrylates including an inclusion compound having an aromatic amine as a guest compound in the invention is effective as a pretreatment agent in adhering various materials to be adhered using a cyanoacrylate adhesive and as a post-treatment agent in filling adhesion or raising adhesion. Further, this accelerator has almost no unpleasant odor. Accordingly, it improves a working environment remarkably.
Abstract:
A transition metal compound represented by the general formula (2) or (3) described below, a catalyst component for olefin polymerization comprising said transition metal compound, a catalyst component for olefin polymerization using said transition metal compound and (C) and/or (D) described below, and a process for producing an olefinic polymer wherein olefins are homopolymerized or olefins are copolymerized with other olefins and/or other polymerizable unsaturated compound using said catalyst for olefin polymerization. (C); A specific aluminum compound. (D); A specific boron compound.
Abstract:
A catalyst in carbonylation processes for producing esters, carboxylic acids, and carboxylic acid anhydrides from lower alkyl alcohols, ethers, esters, alcohol producing derivatives. The catalyst includes a catalytically active metal selected from Group VIII metals, tin mixtures thereof associated with a carbonized polysulfonated divinylbenzene-styrene copolymer.
Abstract:
This invention relates to a catalyst system comprising a substituted, bridged bisindenyl metallocene supported on a polymeric support wherein the metallocene is activated for polymerization by an ionizing reaction and stabilized in cationic form with a noncoordinating anion. A protonated ammonium salt of a noncoordinating amine is covalently bonded to the support. Propylene polymers produced by these supported catalyst systems have melting points and polymer microstructures similar to propylene polymers produced using analogous unsupported catalyst systems.
Abstract:
Disclosed are novel catalysts, processes of synthesizing the catalysts and to olefin polymerization processes using the catalysts. The catalysts are cationic complexes comprising a Group 13 element and certain ligands. These compounds behave similarly to Ziegler-Natta catalysts but effectively catalyze the polymerization of olefins in the absence of any transition metal.
Abstract:
A novel dinuclear metallocene complex is disclosed, which is represented by the following formula (I): wherein M1 and M2 are the same or different and are independently selected from the group consisting of Group IIIB, Group IVB and Group VB transition metals; each X is the same or different and is indepedently an anionic ligand with −1 valence, which is selected from the group consisting H, C1-20 hydrocarbyl, halogen, C1-20 alkoxy, C1-20 aryloxy, NH2, NHR11, NR11R12, —(C═O)NH2, —(C═O)NHR13, and —(C═O)NR13R14, wherein R11, R12, R13 and R14 are C1-20 alkyl; i is an integer from 1 to 3; j is an integer from 1 to 3, R1, R2, R3, R4, R5, R6, R7, and R8 are the same or different and are independently H, a C1-20 linear, branched or cyclic hydrocarbyl group, or a C2-4 cyclic hydrocarbylene group which forms a C4-6 fused ring system; Y1 and Y2 are the same or different and each is an electron-donating group independently selected from a Group 15 or Group 16 element; R9 and R10 are the same or different and each is a divalent radical selected from (—C(R15)2—)p, (—Z(R15)2—)p, or (—Z(R15)2—C(R15)2—)p, Z being silicon, germanium, or tin, R15 being C1-6 alkyl, p being an integer from 1 to 4; R16 is a divalent unsubstituted or alkyl-substituted cyclic alkylene group; and each R17 is independently a C1-20 linear, branched or cyclic hydrocarbyl group. By using the dinuclear metallocene complex as the catalyst, a high molecular weight olefin polymer can be obtained.
Abstract:
Compositions comprising: A) an aluminum compound corresponding to the formula AlArf3, where Arf is a fluorinated aromatic hydrocarbyl moiety of from 6 to 30 carbon atoms; B) an aluminum compound corresponding to the formula: AlArfQ1Q2, or a dimer, adduct, or mixture thereof; where: Arf is as previously defined; Q1 is Arf or a C1-20 hydrocarbyl group, optionally substituted with one or more cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsilylamino, hydrocarbylsilyl, silylhydrocarbyl, di(hydrocarbylsilyl)amino, hydrocarbylamino, di(hydrocarbyl)amino, di(hydrocarbyl)phosphino, or hydrocarbylsulfido groups having from 1 to 20 atoms other than hydrogen, or, further optionally, such substituents may be covalently linked with each other to form one or more fused rings or ring systems; and Q2is an aryloxy, arylsulfide or di(hydrocarbyl)amido group, optionally substituted with one or more hydrocarbyl, cyclohydrocarbyl, hydrocarbyloxy, hydrocarbylsiloxy, hydrocarbylsilylamino, hydrocarbylsilyl, silyhydrocarbyl, di(hydrocarbylsilyl)amino, hydrocarbylamino, di(hydrocarbyl)amino, di(hydrocarbyl)phosphino, or hydrocarbylsulfido groups having from 1 to 20 atoms other than hydrogen, or, further optionally such substituents may be covalently linked with each other to form one or more fused rings or ring systems, said Q2 having from 3 to 20 atoms other than hydrogen; and the molar ratio of A):B) in the composition being from 0.1:1 to 10:1 are useful as activators for olefin polymerizations.
Abstract:
The present invention is directed to a process for the preparation of a gel-free hydrocarbon solution containing a lanthanide rare earth series compound by dissolving or synthesizing a lanthanide compound in an inert hydrocarbon solvent with a Lewis acid in an amount sufficient to prevent formation of highly viscous solutions. The present invention is also directed to the use of the gel-free Ln solutions formed by the recited process as co-catalysts for the polymerization of dienes. The Lewis acid is a group 2, 12, 13, 14 or 15 halide or organohalide, or a transition metal halide, excluding aluminum trialkyls.