Abstract:
A metal alloy is heated to a molten state, and a grain refiner may be added. The molten alloy is poured into a shallow chamber of a shot sleeve of a vertical die cast press and on top of a shot piston. The shot sleeve is transferred to an injection station while the molten alloy cools to a semi-solid slurry with a globular, generally non-dendritic micro structure. An inner portion of the shallow slurry is injected upwardly by the piston through a gate opening into a die cavity while an outer more solid portion of the slurry is entrapped in an annular recess. After the slurry solidifies, the shot piston retracts, and the shot sleeve is transferred to a position where the residual biscuit is removed. The shot piston may have internal grooves to provide a large heat transfer area for cooling water to absorb heat from the molten alloy.
Abstract:
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 μm, and can be easily retrofitted into existing conventional forming machine.
Abstract:
An ultrathin copper foil with a carrier not causing blistering at a release layer interface, having a low carrier peeling force, friendly to the environment, and enabling easy peeling of a carrier foil and an ultrathin copper foil even under a high temperature environment and a printed circuit board enabling a stable production quality of a base of a printed circuit board for fine pattern applications using the ultrathin copper foil with the carrier, that is, a ultrathin copper foil with a carrier comprising a carrier foil, a diffusion prevention layer, a release layer, and an ultrathin copper foil, wherein the release layer is formed by a metal A for retaining a release property and a metal B for facilitating plating of the ultrathin copper foil, a content a of the metal A and a content b of the metal B forming the release layer satisfying an equation: 10≦a/(a+b)*100≦70and a printed circuit board prepared by using such a ultrathin copper foil with a carrier.
Abstract:
In order to protect a monocrystalline superalloy rich in rhenium against corrosion whilst avoiding the formation of progressive secondary reaction zones, a layer (3) formed of tungsten and cobalt is deposited on its surface before aluminisation treatment.
Abstract:
The present invention provides a method for producing a bulk amorphous alloy sheet with high quality at low production cost, by which an alloy melt can be directly transformed into a sheet form without using other additional processes. The method comprises preparing a melt containing alloy components; feeding the melt into a gap defined between two rolls, which rotate in opposite direction to each other, and each of which is provided with heat exchange means; and cooling the melt at a cooling rate higher than the critical cooling rate for transformation of the melt into an amorphous solid phase, when the melt passes through the gap defined between the two rolls. The present invention also provides an apparatus for producing a bulk amorphous alloy sheet with high quality at low production cost, and a bulk amorphous alloy sheet.
Abstract:
An injection-molding process for molding a metal alloy into a near net shape article that is characterized in that the processing temperature of the alloy at injection is approaching the liquidus, preferably having a maximum solids content of 5%, whereby a net-shape molded article can be produced that has a homogeneous, fine equi-axed structure without directional dendrites, and a minimum of entrapped porosity. Advantageously, the resulting solid article has optimal mechanical properties without the expected porosity and solidification shrinkage attributed to castings made from super-heated melts.
Abstract:
The present invention relates to a method of molding a low-melting-point metal alloy which exhibits thixotropy properties in a solid-phase and liquid-phase coexisting temperature region. In this method, a temperature of a heating holding cylinder is increased to a liquidus temperature or higher at the start of a molding operation. Then a remaining material in the preceding molding remaining in the heating holding cylinder in a solid state is wholly melted. After that a temperature of the heating holding cylinder is lowered to a temperature in the solid-phase and a liquid-phase coexisting temperature region. At the same time a molding material is supplied and a provisional molding is carried out. After the temperature has reached the solid-phase and liquid-phase coexisting temperature region, a regular molding is started. By the present invention a problem of a remaining material in the heating holding cylinder, which becomes a trouble at the start of molding by injection, is solved.
Abstract:
A surface of an article is protected by coating the surface with a silicon-containing coating by preparing a coating mixture of silicon, a halide activator, and an oxide powder, positioning the surface of the article in gaseous communication with the coating mixture, and heating the surface of the article and the coating mixture to a coating temperature of from about 1150° F. to about 1500° F. The article is preferably a component of a gas turbine engine made of a nickel-base superalloy.
Abstract:
All aluminum alloy is disclosed that includes 6.5 to 8.5 percent silicon, 0.6 to 1.0 percent iron, 0.3 to 0.5 percent manganese, 0.35 to 0.65 percent magnesium, 0.01 to 1.0 percent zinc, 0.11 to 0.2 percent titanium, 2.0 to 2.5 percent copper, and aluminum as the remainder with further one or more other elements that are 0.001 to 0.15 percent of the weight of the aluminum alloy. An aluminum alloy of the above composition is high in strength and suitable for use with SSM methods of casting, such as Rheocasting and Thixocasting.
Abstract:
A method of forming a metal part includes heating a metal alloy composition to form a liquid that is substantially free of metal solids. The liquid is cooled to form a semi-solid metal alloy slurry having a low weight percentage of substantially non-dendritic solids. The semi-solid metal alloy slurry is transferred to a mold at a low pressure and is cooled to cast a substantially solid part.