Abstract:
A method of producing a fiber, comprising the steps of introducing catalytic particles originally formed in a particle-forming chamber into an arraying chamber together with a carrier gas, to cause the catalytic particles to become arranged on a substrate disposed in the arraying chamber. A next step includes growing fibers, each including carbon as a major component, based on the catalytic particles arranged on the substrate. The fibers grow by heating the catalytic particles arranged on the substrate in an atmosphere containing carbon.
Abstract:
A high-pressure discharge lamp has a support structure for supporting a light emission tube so as to restrict its displacement in a direction perpendicular to the axis line thereof. A pair of thermal-stress generation members generates thermal stresses due to a temperature change at a time of switching the high-pressure discharge lamp from an on status to an off status. The thermal stresses acts as forces directed downward in a vertical direction and outward with respect to the light emission tube on side tube portions of the light emission tube arranged in a posture where the axis line extends in a horizontal direction.
Abstract:
A cold cathode light emitting device includes a plurality of first electrodes, a plurality of insulating layers, a plurality of second electrodes and a third electrode. The insulating layers are laminated on the first electrodes. The second electrodes are provided on the insulating layers to intersect the first electrodes. The third electrode emits light upon receipt of electrons. At least one hole is provided at intersections of the first electrodes and second electrodes. The hole has a first diameter d1 at a position where the insulating layers are in contact with the first electrodes and a second diameter d2 at a position where the insulating layers are in contact with the second electrodes, where d1 is smaller than d2. A nanofiber-structure layer is formed on the first electrodes in an opening portion having the first diameter d1, provided in the at least one hole on the side of the first electrodes.
Abstract:
A carbon nanotube-based field emission device in accordance with the invention includes: a cathode electrode (50), a carbon nanotube array (40) formed perpendicularly on the cathode electrode, a barrier (20) and a gate electrode (60). The carbon nanotube array has a growth end (42) electrically contacting with the cathode electrode, and an opposite root end (44) for emitting electrons therefrom. The root end of the carbon nanotube array defines a substantially planar surface having a flatness of less than 1 micron.
Abstract:
An image display device comprises a faceplate having an image display surface and a rear plate opposed to the faceplate across a gap and having a plurality of electron sources which excite the image display surface. A grid and a plurality of spacers which maintain the space between the plates are provided between the faceplate and the rear plate. A voltage from a voltage supply unit that is higher than a voltage applied to the faceplate is applied to the grid, so that electric discharge can never be caused directly between the faceplate and the rear plate.
Abstract:
In accordance with the inventions, a new configuration of spaced-apart nanostructures is provided as well as a variety of improved articles using the new configuration. Improved articles include microwave amplifiers, field emission displays, plasma displays, electron sources for lithography and compact x-ray sources.
Abstract:
A light transmitting container is used to house a cold cathode fluorescent lamp (CCFL) to reduce heat loss and to increase the luminous efficiency of the lamp. An electrical connector configuration is connected to an electrode of the lamp and adapted to be electrically and mechanically connected to a conventional electrical socket. A driver circuit in the container converts 50 or 60 Hz power to the high frequency power suitable for operating the CCFL. At least one of the electrodes of the CCFL is outside of the container to facilitate heat dissipation. A two-dimensional array of CCFLs may be held by a module housing to form a display for displaying still or moving images and characters. The above-described CCFL configurations may also be used for displaying traffic information. A monochromic, multi-color and full-color cold cathode fluorescent display (CFD), comprises: some shaped white or multi-color or red, green, blue three primary color CCFLs, reflector, base plate, temperature control means, luminance and contrast enhancement face plate, shades and its driving electronics. CFD is a large screen display device which has high luminance, high efficiency, long lifetime, high contrast and excellent color. CFD can be used for applications both of outdoor and indoor even at direct sunlight, to display character, graphic and video image.
Abstract:
A method of fabricating row lines and pixel openings of a field emission array. The method employs only two masks. A first mask employed in the method includes apertures alignable between rows of pixels of the field emission array. Electrically conductive material and semiconductive material exposed through the apertures are removed to define the row lines of the field emission array. A passivation layer is then disposed over at least selected portions of the field emission array. Then a second mask, including apertures alignable over the pixel regions of the field emission array, is disposed over the passivation layer of the field emission array. Passivation material exposed through the apertures of the second mask is removed to define openings through the passivation layer and over the pixel regions of the field emission array. Conductive material exposed through the apertures of the second mask may then be removed to expose the underlying semiconductive grid and to further define the pixel openings.
Abstract:
The present invention achieves a screen of high luminance with an excellent focus characteristic. The tip of a cathode is formed, for example, in a plane shape or a curved surface shape. The tip formed in the plane shape or curved surface shape is used as an electron emission face and is allowed to either enter a hole in a first grid or enter the hole to project from the first grid. An electron beam emitted from the electron emission face can be made almost a parallel beam. Even when the beam current amount is increased, an almost parallel beam can be obtained. Thus, a screen of high luminance can be obtained with an excellent focus characteristic.
Abstract:
An apparatus includes a primary electrode and an acceleration electrode. The acceleration electrode or, alternatively, an additional secondary electrode contains a slot that extends obliquely through the acceleration electrode or through the secondary electrode. This measure allows secondary electrons to be produced in a highly effective manner.