Abstract:
The present invention relates to a system for detection and identification of airborne biological, chemical and/or nuclear threats such as toxins, spores, bacteria, and viruses in real time at distances from a few meters to several kilometers. Compact femtosecond terawatt laser technology is combined with spectroscopic and mathematical methods for spectral sensing of airborne warfare agents such as bio-aerosols. Trigger sensors and standoff devices based on mobile terawatt femtosecond laser systems are provided that may be placed at strategic monitoring locations. Furthermore, the invention relates to the propagation of airborne ultra-short, ultra-intense laser pulses giving rise to plasma channels (filamentation) producing white light supercontinuum ranging from the ultraviolet (UV), visible (VIS), near infra-red (NIR) and middle infra-red (MIR). According to this invention, the supercontinuum can be directly produced in a particle cloud and hence is uniquely suitable for multi-spectral long-range atmospheric agent and radioactive isotope detection.
Abstract:
The present invention relates to a method for visualizing GFP expression in callus, various tissue and organ of the transgenic plants as image and system using the same. The said method needs no other additional genetic product, substrate or cofactor and can detect very simply and quickly GFP expression by using the said system of the present invention consisting of a CCD camera, a light source, band-pass filter and data processing computer, so it provides many advantages for selection of transgenic seeds, for studying of gene expression in the tissue or organ of plants, or for studying of specificity of each development step.
Abstract:
An apparatus for optical scanning of multiple specimens (1) and/or specimen regions, the specimens (1) being associated with a specimen receiving device (2) and being optically scannable by a scanning device (3), is easy to operate for data recording of many specimens in the shortest possible time, using simple and economical optical system components. The apparatus according to the present invention is characterized in that the specimen receiving device (2) is rotatable about an axis (4).
Abstract:
Some of the key optical components of lithography lasers are very sensitive to intensive UV radiation. Intensive UV radiation can cause color center formation in these components. The color centers are reason for laser energy dropping, worse laser-bandwidth and limited life-time. The on-line monitoring of the color-center formation during operation of the lithography lasers detecting laser induced fluorescence and investigation of the fluorescence spectrum can be helpful for maintenance of lithography lasers. The fluorescence signal is analyzed and delivers information about optics quality.
Abstract:
An electric lamp assembly includes an electrodeless lamp having a closed-loop, tubular envelope enclosing mercury vapor and a buffer gas at a pressure less than about 0.5 torr, a transformer core disposed around the lamp envelope, an input winding disposed on the transformer core and a radio frequency power source coupled to the input winding. The radio frequency source supplies sufficient radio frequency energy to the mercury vapor and the buffer gas to produce in the lamp envelope a discharge having a discharge current equal to or greater than about 2 amperes. The electrodeless lamp preferably includes a phosphor on an inside surface of the lamp envelope for emitting radiation in a predetermined wavelength range in response to ultraviolet radiation emitted by the discharge.
Abstract:
A light assembly comprises a self-luminescent light source, a wave guide and output optics. The self-luminescent light source takes the form of a luminescent concentrator which is activated directly or indirectly by radioactive radiation, typically beta radiation from tritium.
Abstract:
A high pressure metal vapor discharge lamp comprising a discharge tube with a pair of spaced main electrodes; a filling sealed in the discharge tube comprising a light emitting metal and a starting gas; a radioactive source comprising a radioactive substance entirely covered with an envelope of non-radioactive, heat- and corrosion-resistant material sealed inside the discharge tube, an outer tube enclosing the discharge tube, and circuit means for starting the discharge tube.
Abstract:
A display device having a liquid crystal cell containing a medium, which can be switched zone-wise between at least two different optical states to form a light valve, a light trap in the form of a plate-shaped body disposed behind the liquid crystal cell when taken in a direction of observation of the device, the plate-shaped body having a material with an index of refraction greater than 1, containing fluorescent particles, and possessing a light emergent or outlet window at the rear of each switchable zone of the liquid crystal cell characterized by the light emergent or outlet windows comprising a groove in the plate and a light scattering surface disposed between the groove and the medium of the liquid crystal cell. Preferably, the grooves of each of the windows is disposed in a rear surface or side of the fluorescent plate and the scattering surface is arranged on a front surface of the plate and can either be formed by a pigment layer which has been silk screened on the front surface or a rough surface zone which has been embossed on the front surface.
Abstract:
A glass tube, laser sealed at its ends, has an elongated cross section, two wide side faces, and two narrow side faces. The tube contains a radioactive gas and a transducer, such as a phosphor compound, responsive to the gas. The narrow side faces of the tube are thicker than the wide side faces. Preferably, the wide side faces are outwardly bowed and the narrow side faces are semicylindrical to form an oval cross section. The ratio of the total glass thickness of the wide side faces to the spacing between the wide side faces is approximately 0.7.
Abstract:
A radiation-excited light source having a beta-emitting radioisotope within a sealed tube. Illumination is provided by the impingement of betas upon phosphor material within the tube. ''''Fiber optic'''' light transmission media are affixed longitudinally along the exterior of the tube and feed light to a plurality of display locations. In one embodiment a thin layer of phosphor is coated over the entire inner surface of the tube. In another embodiment a thicker layer of phosphor is coated to a metal shell positioned within the tube.