Abstract:
An article of manufacture includes a support structure including a cladding material and defining therein a plurality of substantially parallel cores. The article also includes a plurality of conically-shaped spikes protruding from a first side of the support structure. Each respective conically-shaped spike of the plurality of conically-shaped spikes includes a core material (i) extending through a corresponding core of the plurality of substantially parallel cores and (ii) comprising an axial protrusion that protrudes axially from the cladding material at the first side of the support structure. The axial protrusion of the core material is tapered to form the respective conically-shaped spike. The article also includes a refractory metal layer coating at least a portion of each respective conically-shaped spike and one or more electrodes connected to the refractory metal layer and configured to apply a voltage to the refractory metal layer.
Abstract:
The present invention provides a metal electrode transparent to light. The metal electrode comprises a transparent substrate and a metal electrode layer composed of a metal part and plural openings. The metal electrode layer continues without breaks, and 90% or more of the metal part continues linearly without breaks by the openings in a straight length of not more than ⅓ of the visible wavelength to use in 380 nm to 780 nm. The openings have an average diameter in the range of not less than 10 nm and not more than ⅓ of the wavelength of incident light, and the pitches between the centers of the openings are not less than the average diameter and not more than ½ of the wavelength of incident light. The metal electrode layer has a thickness in the range of not less than 10 nm and not more than 200 nm.
Abstract:
In order to improve the decoupling efficiency in a top-emitting OLED a top-emitting electroluminescent component (100) is suggested comprising a substrate, a first electrode (120) nearest to the substrate, a second electrode (14) located at a distance from the substrate, and at least one light-emitting organic layer (130) arranged between both electrodes, the emitted light being transmitted through the second electrode. The component in accordance with the invention is distinguished by an additional layer (150) facing away from the at least one organic layer is arranged on the side of the second electrode, which additional layer comprises optically effective light-emitting heterogeneities (151, 152, 153), especially in the form of scatter centers, the degree of transmission of the additional layer of the emitted light being greater than 0.6. This additional layer can be applied by various wet-chemical processes and vacuum methods, the inhomogeneities being introduced into and/or applied onto the decoupling additional layer during or after the application process. Furthermore, the invention also relates to a method for producing such a component.
Abstract:
Provided is an organic EL display apparatus including: a substrate; plural organic EL devices formed over the substrate, each of the organic EL devices including a first electrode, an organic layer, and a second electrode which are provided in order from a side of the substrate, the organic layer including at least a light emitting layer; plural pixel isolation films, each of which is an insulating film and formed between the first electrodes located adjacent to each other; plural auxiliary wirings which are formed on the plural pixel isolation films and include a conductive material; and plural partition walls which are formed on the auxiliary wirings and include one of an insulator and a conductor which is reverse-tapered to have reverse-tapered portions, in which the plural auxiliary wirings and the second electrodes are electrically connected with each other in positions directly under the reverse-tapered portions of the plural partition walls.
Abstract:
Disclosed is an electrochromic display element which can achieve a bright white display, a high contrast of white/black display and a full-color display in a simple member structure. In a display element, an electrolyte is contained between counter electrodes. A compound represented by Formula (A) is immobilized on at least one of the counter electrodes, wherein the ratio of the region on which the compound represented by Formula (A) is immobilized to the region on which the compound is not immobilized is 1:4 to 4:1. The electrolyte comprises a metal salt compound. A black display, a white display and a color display having a color other than black are achieved by operating the counter electrodes. In Formula (A), R22 represents a substituted or unsubstituted aryl group; R23 and R24 independently represents a hydrogen atom or a substituent; X represents >N—R25, an oxygen atom or sulfur atom; and R25 represents a hydrogen atom or a substituent.
Abstract translation:公开了一种电致变色显示元件,其可以实现明亮的白色显示,白/黑显示的高对比度和简单构件结构中的全色显示。 在显示元件中,电极被包含在相对电极之间。 由式(A)表示的化合物固定在至少一个相对电极上,其中固定化学式(A)的化合物的区域与化合物不固定的区域的比例为1: 4到4:1。 电解质包含金属盐化合物。 通过操作对置电极来实现黑色显示器,白色显示器和具有黑色以外的颜色的彩色显示器。 在式(A)中,R 22表示取代或未取代的芳基; R 23和R 24独立地表示氢原子或取代基; X表示> N-R25,氧原子或硫原子; R 25表示氢原子或取代基。
Abstract:
An optical member realizing suppressed occurrence of a light loss between a phosphor layer performing color conversion and itself, and a display device using the same is provided. The optical member includes a base member having two opposed surfaces, and a phosphor layer provided integrally with one surface of the base member and containing a phosphor that converts a color light to another color light.
Abstract:
A method of producing metal oxide nanoparticles includes the steps of (A) mixing a metal alkoxide, a surfactant, and a first organic solvent under an inert atmosphere to prepare a reaction solution, (B) mixing a reaction initiator prepared by mixing a catalyst with a solvent and the reaction solution under an inert atmosphere and heating to produce an intermediate product, and (C) mixing the intermediate product with a second organic solvent followed by heating the mixture of the intermediate product and the second organic solvent under an inert atmosphere to prepare metal oxide nanoparticles, the surfaces of which are coated with the surfactant.
Abstract:
An image display apparatus includes a face plate including a low-potential electrode and a plate-like spacer including a longitudinal-direction end. The low-potential electrode is set at a lower potential than that of a resistive anode and is disposed between the resistive anode and a feed electrode. The longitudinal-direction end of the plate-like spacer is disposed between the resistive anode and the feed electrode so as to overlap the low-potential electrode.
Abstract:
To provide an image display which is capable of preventing fracturing of a substrate which is attributable to a substrate expansion arising from heating or humidification during a manufacture process, impact in use, or distortion when curved display is conducted, a connection failure between a semiconductor chip and a wiring terminal which are mounted on the substrate, and crack occurring in the substrate in the vicinity of an area where the semiconductor chip is mounted, with no need to add members and with no limit of pulling the wiring around. An image display part is formed on one surface of a flexible substrate, and a groove with a depth not reaching a thickness of the substrate is continuously or intermittently defined in another surface of the substrate.
Abstract:
An organic light emitting diode (OLED) display, a display device including the same, and associated methods, the OLED display including a substrate member, an organic light emitting element on the substrate member, and a liquid crystal polymer layer on the organic light emitting element, wherein the liquid crystal polymer layer is configured to delay a phase of light passing therethrough.