Abstract:
The present invention provides an image forming method comprising the steps of exposing imagewisely an image forming material having a photosensitive layer comprising an infrared absorbing agent, a polymerization initiator and a polymerizable compound on a substrate to overlapping infrared beams. The solubility of the photosensitive layer in an alkali developing solution reduces upon exposure to light of wavelengths in the range of 750 nm to 1400 nm. The exposed image forming material is developed, and the infrared beam diameter used in light exposure is 20 nullm or less, and the overlapping coefficient is 0.8 or more.
Abstract:
The present invention provides a planographic printing plate precursor comprising a photosensitive layer on a support, the photosensitive layer including an infrared absorbent, a radical polymerization initiator and a radical polymerizing compound, the photosensitive layer being recordable with irradiation with an infrared ray, and being at least one of soluble and dispersible in water.
Abstract:
A method for preparing lithographic printing plates is disclosed. Imaged positive-working, thermally imageable, multi-layer imageable elements useful as lithographic printing plate precursors are developed using solvent based developers. Development may be carried out by immersing the imaged imageable element in the developer.
Abstract:
The invention relates to Positive working thermal imaging assembly comprising: A) a substrate; and B) a thermally sensitive imaging element of a composite layer structure comprising: (i) a first layer on the substrate of a polymeric material soluble in aqueous alkali solution, optionally containing compounds that absorb and convert light to heat and/or a coloured dye or pigment; said first layer being converted at its surface by treatment with solutions at elevated temperatures that contain an active compound or compounds capable of rendering said first polymeric material insoluble to aqueous alkali developer at the point of contact ; the first layer being oleophilic; (ii) optionally, a first intermediate layer between the substrate and the said first layer with a second polymeric material which is soluble or dispersible in aqueous solution optionally containing compounds that absorb and convert light or radiation to heat and/or a coloured dye or pigment coated from a solvent that does not substantially dissolve the first layer; and (iii) optionally, a third or top layer over the converted first layer and composed of a second polymeric material which is soluble or dispersible in aqueous solution optionally containing compounds that absorb and convert light or radiation to heat and/or a visible coloured dye or pigment; the first intermediate layer and the third layer being applied with a solvent that does not substantially dissolve the converted first layer. The assembly is useful as off-set lithographic printing plates, for color proofing films and photoresist. The invention also refers to the process for making such assembly and products formed therefrom.
Abstract:
Imageable elements that contain silicate-coated polymer particles in the imageable layer, stacks of these elements, and methods for forming images using these elements are disclosed. The elements do not stick to each other when stacked without interleaving paper, and only one imageable element is lifted at a time when the imageable elements are handled by automatic processing equipment. Blanket piling is not observed when silicate-coated particles are present in the imageable layer.
Abstract:
A planographic printing plate precursor includes a support having disposed thereon a recording layer containing a water-insoluble and alkali-soluble resin, a development inhibitor and an infrared absorber and exhibiting enhanced solubility in an aqueous alkali solution through light exposure. The recording layer may have either a mono-layer construction or a multi-layer construction containing a lower layer and an upper layer. In the case of the multi-layer construction, a layer containing the water-insoluble and alkali-soluble resin is used as the lower layer, and a layer containing the water-insoluble and alkali-soluble resin and the development inhibitor and exhibiting enhanced solubility in an aqueous alkali solution through light exposure is used as the upper layer, and at least one of the lower layer and the upper layer contains the infrared absorber.
Abstract:
The positive image-forming material comprises a resin including a repeating unit corresponding to a specific monomer having an &agr;-heteromethyl structure.
Abstract:
The present invention provides a polymerizable composition comprising (A) a compound including a polymerizable unsaturated group and (B) a macromolecular compound including, at a side chain thereof, a structure represented by the following general formula (I). The present invention also provides a negative type planographic printing plate precursor responsive to an infrared laser, the precursor being superior in recording sensitivity and printing durability and using the polymerizable compound as a recording layer. General Formula (I)ZnullMnullwherein Z31 represents COCOOnull, COOnull, SO3null or SO2nullNnullnullR where R represents a monovalent organic group and M30 represents an onium cation.
Abstract:
The present invention provides a presensitized plate useful for preparing a lithographic printing plate, which comprises a substrate provided thereon with a light-sensitive layer containing a fluoro-aliphatic group-containing copolymer prepared by copolymerizing at least (A) a fluoroalkyl(meth)acrylate represented by the general formula (I) and (B) a polyoxyalkylene group-containing ethylenic unsaturated monomer. By such a presensitized plate, a lithographic printing plate is provided with a light-sensitive layer whose uniformity and solubility or dispersibility in a developer are improved and which has an ability of forming high contrast images without entraining any reduction of the sensitivity.
Abstract:
Provided is a plate-making method for producing a waterless lithographic printing plate, wherein the method comprises: (I) an exposing step of imagewise exposure of the precursor with a laser with a controlled condition that a portion of a laser-exposed area in a photo-thermal conversion layer in the precursor remains in the photo-thermal conversion layer of the finished printing plate, and (II) a developing step of removing a silicone rubber layer in the laser-exposed area to form an image on the printing plate. The precursor to be processed comprises (A) a support, (B) an undercoat layer formed by applying onto the support a coating liquid that contains a water-soluble or water-dispersible polymer and water as a solvent, and then drying the coating liquid, (C) a photo-thermal conversion layer which comprises polyurethane and a photo-thermal converting agent; and (D) a silicone rubber layer, laminated in that order.